Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Whole chains

The interdiffusion of polymer chains occurs by two basic processes. When the joint is first made chain loops between entanglements cross the interface but this motion is restricted by the entanglements and independent of molecular weight. Whole chains also start to cross the interface by reptation, but this is a rather slower process and requires that the diffusion of the chain across the interface is led by a chain end. The initial rate of this process is thus strongly influenced by the distribution of the chain ends close to the interface. Although these diffusion processes are fairly well understood, it is clear from the discussion above on immiscible polymers that the relationships between the failure stress of the interface and the interface structure are less understood. The most common assumptions used have been that the interface can bear a stress that is either proportional to the length of chain that has reptated across the interface or proportional to some measure of the density of cross interface entanglements or loops. Each of these criteria can be used with the micro-mechanical models but it is unclear which, if either, assumption is correct. [Pg.235]

There are three basic time scales in the reptation model [49]. The first time Te Ml, describes the Rouse relaxation time between entanglements of molecular weight Me and is a local characteristic of the wriggling motion. The second time Tro M, describes the propagation of wriggle motions along the contour of the chain and is related to the Rouse relaxation time of the whole chain. The important... [Pg.360]

Effective utilization of a critical technology requires a much closer collaboration throughout the whole chain in which the material is used. Critical technologies evolve and develop over a long period, and so they can support a broad industrial base. This relationship creates a certain inertia with respect to revolutionary change, but it certainly indicates that it is very important to stimulate and maintain evolutionary change. [Pg.17]

The 327-670 GHz EPR spectra of canthaxanthin radical cation were resolved into two principal components of the g-tensor (Konovalova et al. 1999). Spectral simulations indicated this to be the result of g-anisotropy where gn=2.0032 and gi=2.0023. This type of g-tensor is consistent with the theory for polyacene rc-radical cations (Stone 1964), which states that the difference gxx gyy decreases with increasing chain length. When gxx-gyy approaches zero, the g-tensor becomes cylindrically symmetrical with gxx=gyy=g and gzz=gn. The cylindrical symmetry for the all-trans carotenoids is not surprising because these molecules are long straight chain polyenes. This also demonstrates that the symmetrical unresolved EPR line at 9 GHz is due to a carotenoid Jt-radical cation with electron density distributed throughout the whole chain of double bonds as predicted by RHF-INDO/SP molecular orbital calculations. The lack of temperature... [Pg.175]

XtraFood Xenobiotics transfer in the primary FOOD Chain model calculates transfer of contaminants in the primary food chain. This model describes the whole chain from immission of contaminants at the farm level over concentrations in food to human exposure. The model focuses on the terrestrial food chain... [Pg.103]

Diffusion regime Finally, for time t > xd and QRG < 1, translational diffusion of the whole chain is observed resulting in... [Pg.43]

Smallest set of one or more successive configurational base units that generates the whole chain through helical symmetry. [Pg.83]

Related to this are materials whose response to applied light varies according to the intensity of the applied light. This kind of behavior is referred to as nonlinear behavior. In general, polymers with whole-chain delocalization or large-area delocalization where electrons are optically excited may exhibit such nonlinear optical behavior. [Pg.584]

The objectives of the studies reported herein were to (a) compare the effects of a series of phenolic acids, coumarins, and flavonoids on whole chain electron transport and phosphorylation in Isolated plant chloroplasts and mitochondria and (b) identify specific sites of inhibition with polarographic and enzymatic techniques. Exploratory studies were conducted with the 20 compounds listed in Table I. The three glycosides are shown indented below the corresponding aglycones. Detailed studies were conducted with the six compounds, one representative member from each chemical family, designated with an asterisk. [Pg.248]

Inhibition of whole chain electron transport can result from (a) Interaction of the inhibitor with a redox component of the pathway or (b) interaction with carrier systems that transport substrate molecules across the inner membrane. The latter interaction could be direct or indirect. Because electron transport associated with the oxidation of malate, succinate, and exogenous NADH were all inhibited, but to differing extents, a specific Interaction with a single redox component of the inner mitochondrial membrane does not seem to be involved. [Pg.255]

The other representative allelochemlcals inhibited the three transport processes much as quercetin did. The concentration ranges at which the allelochemlcals produced interference were similar to those that inhibited whole-chain electron transport. [Pg.258]

When a chain with M= 200,000 g/mole is linked to other chains at four points, the average molar mass between cross-links, M., amounts to 40,000. The mass of one unit is 4x12 + 6x1 =54 g/mole so the number of units between cross-links is about 740. At the glass-rubber transition no whole chains obtain free mobility, as a result of the entanglements, but chain parts of 30 to 100 monomer units. The chemical cross-links, therefore, hardly contribute to the restriction in chain mobility the increase in Tg will, therefore, be negligible. [Pg.15]

Accordingly, values obtained for model or small molecules are appropriately applied to analogous polymeric materials. This does not apply in cases where the polymeric nature of the material plays an additional role in the conductance of electric charges, as is the case for whole chain resonance electric conductance. [Pg.75]

In the second half of this article, we discuss dynamic properties of stiff-chain liquid-crystalline polymers in solution. If the position and orientation of a stiff or semiflexible chain in a solution is specified by its center of mass and end-to-end vector, respectively, the translational and rotational motions of the whole chain can be described in terms of the time-dependent single-particle distribution function f(r, a t), where r and a are the position vector of the center of mass and the unit vector parallel to the end-to-end vector of the chain, respectively, and t is time, (a should be distinguished from the unit tangent vector to the chain contour appearing in the previous sections, except for rodlike polymers.) Since this distribution function cannot describe internal motions of the chain, our discussion below is restricted to such global chain dynamics as translational and rotational diffusion and zero-shear viscosity. [Pg.119]

Ito has also extended this type of photochemistry to the electron-beam-induced catalytic acidolysis of acid-labile main chain acetal linkages in polyphthaldehyde. These polymers, like the poly(2-methylpentene-l-suIfone) (PMPS) sensitizer in NPR resist described earlier have ceiling temperatures on the order of -40 °C. As normally used, the polyaldehydes are end-capped by acylation or alkylation and are thus quite stable. The main chain bonds are very sensitive to acid-catalyzed cleavage which in turn allows the whole chain to revert to monomer in an unzipping sequence similar to that occuring in irradiated PMPS. Irradiation of polyphthaldehyde containing 10% of a suitable sensitizer such as triphenylsulfonium hexafluoroarsenate with either deep UV... [Pg.107]


See other pages where Whole chains is mentioned: [Pg.539]    [Pg.2519]    [Pg.447]    [Pg.172]    [Pg.60]    [Pg.360]    [Pg.370]    [Pg.386]    [Pg.496]    [Pg.371]    [Pg.244]    [Pg.219]    [Pg.63]    [Pg.57]    [Pg.145]    [Pg.12]    [Pg.76]    [Pg.51]    [Pg.243]    [Pg.39]    [Pg.150]    [Pg.270]    [Pg.509]    [Pg.91]    [Pg.20]    [Pg.30]    [Pg.221]    [Pg.444]    [Pg.590]    [Pg.24]    [Pg.167]    [Pg.172]    [Pg.286]    [Pg.7]    [Pg.27]    [Pg.22]   
See also in sourсe #XX -- [ Pg.230 ]




SEARCH



© 2024 chempedia.info