Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water other hydrocarbon

An adequate prediction of multicomponent vapor-liquid equilibria requires an accurate description of the phase equilibria for the binary systems. We have reduced a large body of binary data including a variety of systems containing, for example, alcohols, ethers, ketones, organic acids, water, and hydrocarbons with the UNIQUAC equation. Experience has shown it to do as well as any of the other common models. V7hen all types of mixtures are considered, including partially miscible systems, the... [Pg.48]

When a customer agrees to purchase gas, product quality is specified in terms of the calorific value of the gas, measured by the Wobbe index (calorific value divided by density), the hydrocarbon dew point and the water dew point, and the fraction of other gases such as Nj, COj, HjS. The Wobbe index specification ensures that the gas the customer receives has a predictable calorific value and hence predictable burning characteristics. If the gas becomes lean, less energy is released, and if the gas becomes too rich there is a risk that the gas burners flame out . Water and hydrocarbon dew points (the pressure and temperature at which liquids start to drop out of the gas) are specified to ensure that over the range of temperature and pressure at which the gas is handled by the customer, no liquids will drop out (these could cause possible corrosion and/or hydrate formation). [Pg.194]

Alkynes resemble alkanes and aUcenes m their physical properties They share with these other hydrocarbons the properties of low density and low water solubility They are slightly more polar and generally have slightly higher boiling points than the corre spondmg alkanes and alkenes... [Pg.365]

In general arenes resemble other hydrocarbons in their physical properties They are nonpolar insoluble in water and less dense than water In the absence of polar sub stituents mtermolecular forces are weak and limited to van der Waals attractions of the induced dipole/mduced dipole type... [Pg.438]

Carboxylate groups are hydrophilic ( water loving ) and tend to confer water sol ubility on species that contain them Long hydrocarbon chains are lipophilic ( fat loving ) and tend to associate with other hydrocarbon chains Sodium stearate is an example of an amphiphilic substance both hydrophilic and lipophilic groups occur within the same molecule... [Pg.800]

Direct hydrohquefaction of biomass or wastes can be achieved by direct hydrogenation of wood chips on treatment at 10,132 kPa and 340 to 350°C with water and Raney nickel catalyst (45). The wood is completely converted to an oily Hquid, methane, and other hydrocarbon gases. Batch reaction times of 4 hours give oil yields of about 35 wt % of the feed the oil contains about 12 wt % oxygen and has a heating value of about 37.2 MJ /kg (16,000 Btu/lb). Distillation yields a significant fraction that boils in the same range as diesel fuel and is completely miscible with it. [Pg.26]

Fuel. Natural gas is used as a primary fuel and source of heat energy throughout the iadustrialized countries for a broad range of residential, commercial, and iadustrial appHcations. The methane and other hydrocarbons react readily with oxygen to release heat by forming carbon dioxide and water through a series of kinetic steps that results ia the overall reaction,... [Pg.174]

One cubic foot (0.03 cu.m) of methane requires 10 cubic feet (0.28 cu.m) of air (2cu.ft (0.06 cu.m) of oxygen and 8cu.ft (0.23 cu.m) of nitrogen) for combustion. The products are carbon dioxide, nitrogen, and water. The combustion product of one cubic foot of methane yields a total of nine cubic feet of carbon dioxide gas. Also, the gas burned contains some ethane, propane, and other hydrocarbons. The yield of inert combustion gas from burning a cubic foot of methane will be 9.33 cubic feet (0.26 cu.m)... [Pg.374]

The latex of the Sapota achras yields a thermoplastic material, chicle, consisting of about 17.4% hydrocarbon, 40% acetone soluble resin and 35% occluded water. The hydrocarbon appears to contain both trans- and c/s-polyisoprene. Although originally introduced as gutta pereha and natural rubber substitutes, deresinated chicle has become important as the base for chewing gum. Like other polyisoprenes, it is meeting competition from synthetic polymers. [Pg.866]

Curves relating the corrected retention volume to the concentration of moderator (methanol) in the mobile phase [3] are shown in Figure 4. In pure water, the hydrocarbon chains of the brush phase interact with each other and collapse onto the surface in much the same way as drops of an hydrocarbon will coalesce on the... [Pg.92]

Blowdown systems utilize a series of flash drums and condensers to separate the blowdown into its vapor and liquid components. The liquid is typically composed of mixtures of water and hydrocarbons containing sulfides, ammonia, and other contaminants, which are sent to the wastewater treatment plant. [Pg.100]

Although acetylene and terminal alkynes are far- stronger acids than other hydrocarbons, we must remember that they are, nevertheless, very weak acids—much weaker than water and alcohols, for exanple. Hydroxide ion is too weak a base to convert acetylene to its anion in meaningful amounts. The position of the equilibrium described by the following equation lies overwhelmingly to the left ... [Pg.369]

With a p fa of 16, cyclopentadiene is only a slightly weaker acid than water (pA a = 15.7). It is much more acidic than other hydrocarbons—its for ionization is 10 ° times greater than acetylene, for example—because its conjugate base is aromatic and stabilized by electron delocalization. [Pg.458]

The pKa of 1,3-cyclopentadiene is 15, making it more acidic than water, as well as more acidic than almost any other hydrocarbon. This unusual acidity is presumably due to resonance stabilization of the conjugate base, which can be drawn as a hybrid of five resonance contributors. [Pg.183]

The other fuels, when burned, also produce water vapor and—in the case of oil—other hydrocarbons, as well as carbon dioxide. For equal amounts of energy, oil produces about 80 percent of the CO, that coal does natural gas only produces 55 percent of coal s CO, level. [Pg.251]

The direct counter-current contact of a hot gas with a cool immiscihle liquid is effectively used in certain hydrocarbon cracking processes for the quenching of hot gases/vapors. Sometimes, the liquid used is oil and followed hy water quench, as is typical in ethylene plants cracking naphtha or other hydrocarbon as feed stock. [Pg.249]

Figure 41-4. Diagrammatic cross-section of a micelle. The polar head groups are bathed in water, whereas the hydrophobic hydrocarbon tails are surrounded by other hydrocarbons and thereby protected from water. Micelles are relatively small (compared with lipid bilayers) spherical structures. Figure 41-4. Diagrammatic cross-section of a micelle. The polar head groups are bathed in water, whereas the hydrophobic hydrocarbon tails are surrounded by other hydrocarbons and thereby protected from water. Micelles are relatively small (compared with lipid bilayers) spherical structures.
The active ingredients in a shampoo play three fundamental roles. Some allow water to wash away the substances that make hair dirty. Others adhere to hair to impart a desirable feel and texture. The rest are emulsifiers that keep the mixture from separating into its components. To accomplish these effects, ingredients combine two types of interactions a strong attraction to water (hydrophilic) and an aversion to water (hydrophobic). It may seem that these properties are incompatible, but shampoos contain molecules that are designed to be simultaneously hydrophilic and hydrophobic. One example is sodium lauryl sulfate, our inset molecule. The ionic head of the molecule is hydrophilic, so it interacts attractively with water. The hydrocarbon tail is hydrophobic, so it interacts attractively with grease and dirt. Molecules of the shampoo associate with hydrophobic dirt particles to form hydrophilic clumps that dissolve in water and wash away. [Pg.828]

The most critical decision to be made is the choice of the best solvent to facilitate extraction of the drug residue while minimizing interference. A review of available solubility, logP, and pK /pKb data for the marker residue can become an important first step in the selection of the best extraction solvents to try. A selected list of solvents from the literature methods include individual solvents (n-hexane, " dichloromethane, ethyl acetate, acetone, acetonitrile, methanol, and water ) mixtures of solvents (dichloromethane-methanol-acetic acid, isooctane-ethyl acetate, methanol-water, and acetonitrile-water ), and aqueous buffer solutions (phosphate and sodium sulfate ). Hexane is a very nonpolar solvent and could be chosen as an extraction solvent if the analyte is also very nonpolar. For example, Serrano et al used n-hexane to extract the very nonpolar polychlorinated biphenyls (PCBs) from fat, liver, and kidney of whale. One advantage of using n-hexane as an extraction solvent for fat tissue is that the fat itself will be completely dissolved, but this will necessitate an additional cleanup step to remove the substantial fat matrix. The choice of chlorinated hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride should be avoided owing to safety and environmental concerns with these solvents. Diethyl ether and ethyl acetate are other relatively nonpolar solvents that are appropriate for extraction of nonpolar analytes. Diethyl ether or ethyl acetate may also be combined with hexane (or other hydrocarbon solvent) to create an extraction solvent that has a polarity intermediate between the two solvents. For example, Gerhardt et a/. used a combination of isooctane and ethyl acetate for the extraction of several ionophores from various animal tissues. [Pg.305]

NH3, SO2, anesthetics, N2O,...) to cations, anions and neutral species (water, H2O2, hydrocarbons, nitroaromatics, glucose,...). It would be impossible to summarize here all the optical fluorosensors and their applications reported so far. Many more examples and details are given in other chapters of this book. In the following paragraphs we will just mention a few current areas of research in the field and future trends. [Pg.111]

The above reaction occurs in two different steps, with carbon monoxide (CO) formed as an intermediate product. Temperature is a very important parameter at temperatures higher than 800 °C, there can be excess CO produced, while at temperatures lower than 500 °C, CH4 and other hydrocarbons are formed. In order to catalyse the reaction, finely powdered iron ( 10 pm) is usually used. Unless removed, the water produced may react... [Pg.475]


See other pages where Water other hydrocarbon is mentioned: [Pg.80]    [Pg.292]    [Pg.87]    [Pg.357]    [Pg.421]    [Pg.274]    [Pg.117]    [Pg.444]    [Pg.480]    [Pg.1264]    [Pg.275]    [Pg.452]    [Pg.212]    [Pg.253]    [Pg.304]    [Pg.160]    [Pg.397]    [Pg.102]    [Pg.275]    [Pg.376]    [Pg.252]    [Pg.92]    [Pg.748]    [Pg.80]    [Pg.304]    [Pg.46]    [Pg.94]   
See also in sourсe #XX -- [ Pg.409 ]




SEARCH



Hydrocarbon water

Hydrocarbon water systems, other

Other Hydrocarbons

© 2024 chempedia.info