Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis base water

When carbon forms four covalent bonds with halogen atoms the second quantum level on the carbon is completely filled with electrons. Most of the reactions of the Group IV tetrahalides require initial donation by a Lewis base (p. 91) (e.g. water, ammonia) which attaches initially to the tetrahalide by donation of its electron pair. Hence, although the calculated free energy of a reaction may indicate that the reaction is energetically favourable, the reaction may still not proceed. Thus we find that the tetrahalides of carbon... [Pg.195]

This chapter introduces the experimental work described in the following chapters. Some mechanistic aspects of the Diels-Alder reaction and Lewis-acid catalysis thereof are discussed. This chapter presents a critical survey of the literature on solvent ejfects on Diels-Alder reactions, with particular emphasis on the intriguing properties of water in connection with their effect on rate and selectivity. Similarly, the ejfects of water on Lewis acid - Lewis base interactions are discussed. Finally the aims of this thesis are outlined. [Pg.1]

Lewis acid - Lewis base coordination in water... [Pg.28]

The second important influence of the solvent on Lewis acid - Lewis base equilibria concerns the interactions with the Lewis base. Consequently the Lewis addity and, for hard Lewis bases, especially the hydrogen bond donor capacity of tire solvent are important parameters. The electron pair acceptor capacities, quantified by the acceptor number AN, together with the hydrogen bond donor addities. O, of some selected solvents are listed in Table 1.5. Water is among the solvents with the highest AN and, accordingly, interacts strongly witli Lewis bases. This seriously hampers die efficiency of Lewis-acid catalysis in water. [Pg.30]

Finally, the solvent also interacts with sites of the Lewis acid and the Lewis base that are not directly involved in mutual coordination, thereby altering the electronic properties of the complex. For example, delocalisation of charges into the surrounding solvent molecules causes ions in solution to be softer than in the gas phase . Again, water is particularly effective since it can act as an efficient electron pair acceptor as well as a donor. [Pg.31]

In summary, water is clearly an extremely bad solvent for coordination of a hard Lewis acid to a hard Lewis base. Hence, catalysis of Diels-Alder reactions in water is expected to be difficult due to the relative inefficiency of the interactions between the Diels-Alder reactants and the Lewis-acid catalyst in this medium. [Pg.31]

In the final chapter ofi this thesis, the work described in the preceding chapters is evaluated. Furthermore, two pivotal themes ofi this work, Lewis acid - Lewis base interactions in water and hydrophobic fiects, are reviewed. Finally, the prospects ofi Lewis-acid catalysis in aqueous solution are discussed. [Pg.161]

Analogously, water is extremely efficient in weakening hard Lewis add - hard Lewis base interactions. Consequently, when aiming at catalysis by hard Lewis adds, the inefficiency of the interaction between the catalyst and the substrate is a serious problem. Strangely enough, this characteristic of water is not recognised by many researchers working with hard Lewis acids in... [Pg.163]

In Chapter 1 mechanistic aspects of Are Diels-Alder reaction are discussed. The literature on the effects of solvents and Lewis-acid catalysts on this reaction is surveyed. The special properties of water are reviewed and the effects of water on the Diels-Alder reaction is discussed. Finally, the effect of water on Lewis acid - Lewis base interactions is described. [Pg.173]

In Chapter 6 we survey what has been accomplished and indicate directions for future research. Furthermore, we critically review the influence of water on Lewis acid - Lewis base interactions. This influence has severe implications for catalysis, in particular when hard Lewis acids and bases are involved. We conclude that claims of Lewis-acid catalysis should be accompanied by evidence for a direct interaction between catalyst and substrate. [Pg.178]

The Lewis base that acts as the nucleophile often is but need not always be an anion Neutral Lewis bases can also serve as nucleophiles Common examples of substitutions involving neutral nucleophiles include solvolysis reactions Solvolysis reactions are substitutions m which the nucleophile is the solvent m which the reaction is carried out 8olvolysis m water (hydrolysis) converts an alkyl halide to an alcohol... [Pg.336]

Neutral Lewis bases such as water alcohols and carboxylic acids are much weaker nucleophiles than their conjugate bases When comparing species that have the same nucleophilic atom a negatively charged nucleophile is more reactive than a neutral one... [Pg.337]

Idemitsu Process. Idemitsu built a 50 t x 10 per year plant at Chiba, Japan, which was commissioned in Febmary of 1989. In the Idemitsu process, ethylene is oligomerised at 120°C and 3.3 MPa (33 atm) for about one hour in the presence of a large amount of cyclohexane and a three-component catalyst. The cyclohexane comprises about 120% of the product olefin. The catalyst includes sirconium tetrachloride, an aluminum alkyl such as a mixture of ethylalurninumsesquichloride and triethyl aluminum, and a Lewis base such as thiophene or an alcohol such as methanol (qv). This catalyst combination appears to produce more polymer (- 2%) than catalysts used in other a-olefin processes. The catalyst content of the cmde product is about 0.1 wt %. The catalyst is killed by using weak ammonium hydroxide followed by a water wash. Ethylene and cyclohexane are recycled. Idemitsu s basic a-olefin process patent (9) indicates that linear a-olefin levels are as high as 96% at C g and close to 100% at and Cg. This is somewhat higher than those produced by other processes. [Pg.440]

The tnhahdes of phosphoms usually are obtained by direct halogenation under controlled conditions, eg, in carbon disulfide solution in the case of the triiodide. Phosphoms trifluoride [7647-19-0] is best made by transhalogenation of PCl using AsF or Cap2. AH of the phosphoms tnhahdes are both Lewis bases and acids. The phosphoms tnhahdes rapidly hydroly2e in water and are volatile. Examination by electron diffraction has confirmed pyramidal stmctures for the gaseous tnhahde molecules (36). Physical properties and heat of formation of some phosphoms hahdes are hsted in Table 7. [Pg.365]

Zirconium tetrachloride is instantly hydrolyzed in water to zirconium oxide dichloride octahydrate [13520-92-8]. Zirconium tetrachloride exchanges chlorine for 0x0 bonds in the reaction with hydroxylic ligands, forming alkoxides from alcohols (see Alkoxides, METAl). Zirconium tetrachloride combines with many Lewis bases such as dimethyl sulfoxide, phosphoms oxychloride and amines including ammonia, ethers, and ketones. The zirconium organometalLic compounds ate all derived from zirconium tetrachloride. [Pg.435]

Epoxides are regio- and stereoselectively transformed into fluorohydrins by silicon tetrafluoride m the presence of a Lewis base, such as diisopropyleth-ylamme and, m certain instances, water or tetrabutylammonium fluoride The reactions proceed under very mild conditions (0 to 20 C in 1,2-diohloroethane or diethyl ether) and are highly chemoselective alkenes, ethers, long-chain internal oxiranes, and carbon-silicon bonds remain intact The stereochemical outcome of the epoxide ring opening with silicon tetrafluoride depends on an additive used, without addition of water or a quaternary ammonium fluoride, as fluorohydrins are formed, whereas m the presence of these additives, only anti opening leading to trans isomers is observed [17, 18] (Table 2)... [Pg.204]

The purity of ionic liquids is a key parameter, especially when they are used as solvents for transition metal complexes (see Section 5.2). The presence of impurities arising from their mode of preparation can change their physical and chemical properties. Even trace amounts of impurities (e.g., Lewis bases, water, chloride anion) can poison the active catalyst, due to its generally low concentration in the solvent. The control of ionic liquid quality is thus of utmost importance. [Pg.278]

Another way of replacing chloride trans to phosphine involves using silver salts reaction with AgPF6 and AgN03 introduces, respectively, a water molecule (XII) and a nitrate group (IX), which may in turn be replaced by a range of Lewis bases, giving (VIII), (X) and (XXV). [Pg.152]

Basicity nearly always arises from the presence of unshared electron pairs. Consequently, amines produce an alkaline reaction in aqueous solution by functioning as an electron donor (or Lewis base), withdrawing hydrogen ions from water and leaving an excess of hydroxyl ions in the solution. [Pg.524]

Water was also investigated as a proton donor for the hydrogen bond with DMSO and other Lewis bases at infinite dilution detected by means of 1H NMR54-69. A comparison of the hydrogen bonding ability of DMSO in various other aprotic solvents was presented by Delpuech70 who measured the H-NMR chemical shift of CHC13. [Pg.552]

The curved arrows show the direction in which the electrons can be thought to move.) Similarly, when the Lewis base ammonia, NH3, dissolves in water, some of the molecules accept protons from water molecules ... [Pg.518]

In this reaction, the C atom of C02, the Lewis acid, accepts an electron pair from the O atom of a water molecule, the Lewis base, and a proton migrates from an H20 oxygen atom to a C02 oxygen atom. The product, an H2C03 molecule, is a Bronsted acid. [Pg.519]

The protons come from the water molecules that hydrate these metal cations in solution (Fig. 10.19). The water molecules act as Lewis bases and share electrons with the metal cations. This partial loss of electrons weakens the O -H bonds and allows one or more hydrogen ions to be lost from the water molecules. Small, highly charged cations exert the greatest pull on the electrons and so form the most acidic solutions. [Pg.540]

As described in Section 10.13, the strong polarizing effect of the small, highly charged Al3+ ion (a Lewis acid) on the water molecules around it (Lewis bases) gives the Al(H20)63+ ion acidic properties ... [Pg.721]

Ammonia is very soluble in water because the NH3 molecules can form hydrogen bonds to H20 molecules. Ammonia is a weak Bronsted base in water it is also a reasonably strong Lewis base, particularly toward d-block elements. For example, it reacts with Cu2+(aq) ions to give a deep-blue complex (Fig. 15.4) ... [Pg.746]

Water is also a Lewis base, because an HzO molecule can donate one of its lone pairs to a Lewis acid and form complexes such as Fe(H20)63+. Water s ability to act as a Lewis base is also the origin of its ability to hydrolyze substances. The reaction between water and phosphorus pentachloride mentioned in Section 15.2 is an example. [Pg.756]

Many of the d-block elements form characteristically colored solutions in water. For example, although solid copper(II) chloride is brown and copper(II) bromide is black, their aqueous solutions are both light blue. The blue color is due to the hydrated copper(II) ions, [Cu(H20)fJ2+, that form when the solids dissolve. As the formula suggests, these hydrated ions have a specific composition they also have definite shapes and properties. They can be regarded as the outcome of a reaction in which the water molecules act as Lewis bases (electron pair donors, Section 10.2) and the Cu2+ ion acts as a Lewis acid (an electron pair acceptor). This type of Lewis acid-base reaction is characteristic of many cations of d-block elements. [Pg.788]

Because water is a Lewis base, it forms complexes with most d-block ions when they dissolve in it. Aqueous solutions of d-metal ions are usually solutions of their HzO complexes Fe2+(aq), for instance, is more accurately [Fe(H20)6]2+. Many complexes are prepared simply by mixing aqueous solutions of a d-metal ion with the appropriate Lewis base (Fig. 16.16) for example,... [Pg.790]

B Boric acid acts as a Lewis acid. The boron atom in B(OH)3 has an incomplete octet and forms a bond by accepting a lone pair of electrons from a water molecule, which is acting as a Lewis base. The complex formed is a weak Bronsted acid in which an acidic proton can be lost from the H20 molecule in the complex. [Pg.979]


See other pages where Lewis base water is mentioned: [Pg.739]    [Pg.739]    [Pg.719]    [Pg.30]    [Pg.49]    [Pg.161]    [Pg.164]    [Pg.165]    [Pg.224]    [Pg.278]    [Pg.190]    [Pg.503]    [Pg.59]    [Pg.2]    [Pg.562]    [Pg.757]    [Pg.232]    [Pg.382]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Water-based

© 2024 chempedia.info