Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water hydrophilic-hydrophobic

Hydrophilic/hydrophobic properties. In water-based systems, the filler should be compatible with water because filler dispersion occurs in an aqueous medium before a polymer emulsion is added. In general, most fillers are hydropho-... [Pg.631]

The active ingredients in a shampoo play three fundamental roles. Some allow water to wash away the substances that make hair dirty. Others adhere to hair to impart a desirable feel and texture. The rest are emulsifiers that keep the mixture from separating into its components. To accomplish these effects, ingredients combine two types of interactions a strong attraction to water (hydrophilic) and an aversion to water (hydrophobic). It may seem that these properties are incompatible, but shampoos contain molecules that are designed to be simultaneously hydrophilic and hydrophobic. One example is sodium lauryl sulfate, our inset molecule. The ionic head of the molecule is hydrophilic, so it interacts attractively with water. The hydrocarbon tail is hydrophobic, so it interacts attractively with grease and dirt. Molecules of the shampoo associate with hydrophobic dirt particles to form hydrophilic clumps that dissolve in water and wash away. [Pg.828]

Surface properties such as the absorptional ability and the wettability of minerals are again of significant technical importance. On the wettability scale, as for example, minerals are classified as hydrophilic minerals (which are easily wetted by water) and hydrophobic minerals (which are not wetted by water). Hydrophobicity is very helpful in obtaining enrichment of ores by flotation. [Pg.58]

Drug Release from PHEMA-l-PIB Networks. Amphiphilic networks due to their distinct microphase separated hydrophobic-hydrophilic domain structure posses potential for biomedical applications. Similar microphase separated materials such as poly(HEMA- -styrene-6-HEMA), poly(HEMA-6-dimethylsiloxane- -HEMA), and poly(HEMA-6-butadiene- -HEMA) triblock copolymers have demonstrated better antithromogenic properties to any of the respective homopolymers (5-S). Amphiphilic networks are speculated to demonstrate better biocompatibility than either PIB or PHEMA because of their hydrophilic-hydrophobic microdomain structure. These unique structures may also be useful as swellable drug delivery matrices for both hydrophilic and lipophilic drugs due to their amphiphilic nature. Preliminary experiments with theophylline as a model for a water soluble drug were conducted to determine the release characteristics of the system. Experiments with lipophilic drugs are the subject of ongoing research. [Pg.210]

We have found that hydrophilic oiganic polymers treated with TiCLi have much higher etching selectivities than organosilicon polymers in an O2 plasma. This paper examines some of the parameters that influence the reaction of TiCLi with a variety of polymers. We find that TiCLi, readily functionalizes hydrophilic as well as moderately hydrophobic polymers, but fails to functionalize very hydrophobic films. Rutherford backscattering analysis reveals that TiCl4 is hydrolyzed at hydrophilic polymer surfaces that have sorbed water. Lack of surface water on hydrophobic polymers explains the absence of a TiC>2 layer on these polymer surfaces. [Pg.189]

TiCU readily functionalizes hydrophilic polymers such as poly(vinyl alcohol), m-ciesol novolac and methacrylic acid copolymers as well as moderately hydrophobic polymers such as poly(methyl methacrylate), poly(vinyl acetate), poly(benzyl methacrylate) and fully acetylated m-cresol novolac. HCI4 did not react with poly(styrene) to form etch resistant films indicating that very hydrophobic films follow a different reaction pathway. RBS analysis revealed that Ti is present only on the surface of hydrophilic and moderately hydrophobic polymer films, whereas it was found diffused through the entire thickness of the poly(styrene) films. The reaction pathways of hydrophilic and hydrophobic polymers with HCI4 are different because TiCl is hydrolysed by the surface water at the hydrophilic polymer surfaces to form an etch resistant T1O2 layer. Lack of such surface water in hydrophobic polymers explains the absence of a surface TiC>2 layer and the poor etching selectivities. [Pg.208]

It 1s well known that water absorption bears a direct relation with the number of polar groups in the polymer and that Ionic diffusion occur via "hopping" along hydrophilic sites. Therefore, the hydrophilic/ hydrophobic characteristics of the Inhibitor exert a profound effect on dissolution rate. [Pg.383]

Triacylglycerols are very hydrophobic, while the liquid in blood (plasma) is mostly water and is therefore very hydrophilic. Hydrophobic molecules literally are water fearing or water hating. [Pg.544]

FIGURE 3.27 Relationship between water and hydrophobic and hydrophilic surfaces. [Pg.81]

In a previous section, the effect of plasma on PVA surface for pervaporation processes was also mentioned. In fact, plasma treatment is a surface-modification method to control the hydrophilicity-hydrophobicity balance of polymer materials in order to optimize their properties in various domains, such as adhesion, biocompatibility and membrane-separation techniques. Non-porous PVA membranes were prepared by the cast-evaporating method and covered with an allyl alcohol or acrylic acid plasma-polymerized layer the effect of plasma treatment on the increase of PVA membrane surface hydrophobicity was checked [37].The allyl alcohol plasma layer was weakly crosslinked, in contrast to the acrylic acid layer. The best results for the dehydration of ethanol were obtained using allyl alcohol treatment. The selectivity of treated membrane (H20 wt% in the pervaporate in the range 83-92 and a water selectivity, aH2o, of 250 at 25 °C) is higher than that of the non-treated one (aH2o = 19) as well as that of the acrylic acid treated membrane (aH2o = 22). [Pg.128]

It is important to propose molecular and theoretical models to describe the forces, energy, structure and dynamics of water near mineral surfaces. Our understanding of experimental results concerning hydration forces, the hydrophobic effect, swelling, reaction kinetics and adsorption mechanisms in aqueous colloidal systems is rapidly advancing as a result of recent Monte Carlo (MC) and molecular dynamics (MO) models for water properties near model surfaces. This paper reviews the basic MC and MD simulation techniques, compares and contrasts the merits and limitations of various models for water-water interactions and surface-water interactions, and proposes an interaction potential model which would be useful in simulating water near hydrophilic surfaces. In addition, results from selected MC and MD simulations of water near hydrophobic surfaces are discussed in relation to experimental results, to theories of the double layer, and to structural forces in interfacial systems. [Pg.20]

The present author has developed a novel method called ion-association method. This is also a simple and versatile method for the preparation of ion-based organic dye nanoparticles in pure aqueous solution by the ion association approach [23]. It utilizes the control of hydrophilicity/hydrophobicity of the ionic material itself via ion-pair formation for example, addition of a cationic target dye solution into aqueous solution containing a certain kind of hydrophobic anions forms an electrically neutral ion-pair because of the strong electrostatic attraction, followed by aggregation of ion-pair species originated from van der Waals attractive interactions between them to produce nuclei and the subsequent nanoparticles (Fig. 3). In this case, hydrophobic but water-soluble anions, such as tetraphenyl-borate (TPB) or its derivatives (tetrakis(4-fluorophenyl)borate (TFPB), tetrakis [3,5-... [Pg.290]

In general, incorporation of hydrophobic groups into PIPAAm chains decreases the LCST [29-31]. Hydrophobic groups alter the hydrophilic/ hydrophobic balance in PIPAAm, promoting a PIPAAm phase transition at the LCST, water clusters around the hydrophobic segments are excluded from the hydrophobicaUy aggregated inner core. The resulting isolated hydrophobic micellar core does not directly interfere with outer shell PIPAAm chain dynamics in aqueous media. The PIPAAm chains of the micellar outer shell therefore remain as mobile linear chains in this core-shell micellar structure. As a result, the thermoresponsive properties of PIPAAm in the outer PIPAAm chains of this structure are unaltered [23-27,32]. [Pg.33]


See other pages where Water hydrophilic-hydrophobic is mentioned: [Pg.43]    [Pg.153]    [Pg.245]    [Pg.24]    [Pg.350]    [Pg.63]    [Pg.3]    [Pg.225]    [Pg.146]    [Pg.200]    [Pg.568]    [Pg.514]    [Pg.460]    [Pg.75]    [Pg.54]    [Pg.122]    [Pg.131]    [Pg.412]    [Pg.21]    [Pg.378]    [Pg.81]    [Pg.116]    [Pg.246]    [Pg.338]    [Pg.42]    [Pg.318]    [Pg.343]    [Pg.425]    [Pg.159]    [Pg.178]    [Pg.30]    [Pg.455]    [Pg.281]    [Pg.755]    [Pg.489]    [Pg.32]    [Pg.921]   


SEARCH



Hydrophilicity-hydrophobicity

Hydrophobic-hydrophilic

Water hydrophobicity

© 2024 chempedia.info