Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water homogeneous catalysts

Catalyst recovery is a major operational problem because rhodium is a cosdy noble metal and every trace must be recovered for an economic process. Several methods have been patented (44—46). The catalyst is often reactivated by heating in the presence of an alcohol. In another technique, water is added to the homogeneous catalyst solution so that the rhodium compounds precipitate. Another way to separate rhodium involves a two-phase Hquid such as the immiscible mixture of octane or cyclohexane and aliphatic alcohols having 4—8 carbon atoms. In a typical instance, the carbonylation reactor is operated so the desired products and other low boiling materials are flash-distilled. The reacting mixture itself may be boiled, or a sidestream can be distilled, returning the heavy ends to the reactor. In either case, the heavier materials tend to accumulate. A part of these materials is separated, then concentrated to leave only the heaviest residues, and treated with the immiscible Hquid pair. The rhodium precipitates and is taken up in anhydride for recycling. [Pg.78]

A new homogeneous process for hydroformylation of olefins using a water-soluble catalyst has been developed (40). The catalyst is based on a rhodium complex and utilizes a water-soluble phosphine such as tri(M-sulfophenyl)phosphine. The use of an aqueous phase simplifies the separation of the catalyst and products (see Oxo process). [Pg.51]

This is the so-called water-gas shift reaction (—AG29gl9.9kJmoP ) and it can also be effected by low-temperature homogeneous catalysts in aqueous acid solutions. The extent of subsequent purification of the hydrogen depends on the use to which it will be put. [Pg.38]

The reaction between mono-octyl phthalate and i5tMx tanol (see Fig. 5.4-25) in the presence of a homogeneous catalyst (rert-butyl titanate) was studied in a batch reactor (Szarawara et al., 1991). This is the second step of the reaction between phthalic anhydride and o-octanol. First the ring is opened and mono-octyl phthalate is formed. Water is removed by evaporation as it is formed. The reaction was carried out at 174 °C. The initial concentration of mono-octyl phthalate was cpno = 1.85 mol/L and the ratio of initial concentrations of iio-octanol to mono-ooctyl phthalate coc.o/cph,o = 1.4. The reaction was... [Pg.308]

Hiratsuka et al102 used water-soluble tetrasulfonated Co and Ni phthalocyanines (M-TSP) as homogeneous catalysts for C02 reduction to formic acid at an amalgamated platinum electrode. The current-potential and capacitance-potential curves showed that the reduction potential of C02 was reduced by ca. 0.2 to 0.4 V at 1 mA/cm2 in Clark-Lubs buffer solutions in the presence of catalysts compared to catalyst-free solutions. The authors suggested that a two-step mechanism for C02 reduction in which a C02-M-TSP complex was formed at ca. —0.8 V versus SCE, the first reduction wave of M-TSP, and then the reduction of C02-M-TSP took place at ca. -1.2 V versus SCE, the second reduction wave. Recently, metal phthalocyanines deposited on carbon electrodes have been used127 for electroreduction of C02 in aqueous solutions. The catalytic activity of the catalysts depended on the central metal ions and the relative order Co2+ > Ni2+ Fe2+ = Cu2+ > Cr3+, Sn2+ was obtained. On electrolysis at a potential between -1.2 and -1.4V (versus SCE), formic acid was the product with a current efficiency of ca. 60% in solutions of pH greater than 5, while at lower pH... [Pg.368]

Immobilization of catalysts is an important process design feature (see Chapter 9.9). A recent example of catalyst immobilization is the biphasic approach which seems superior to immobilization on solids, as successfully proven in the Ruhrchemie/Rhone Poulenc process for the hydro-formylation of olefins.286 Supported liquid phase catalysis was devised as a method for the immobilization of homogeneous catalysts on solids. When the liquid phase is water, a water-soluble catalyst may be physically bound to the solid. [Pg.114]

One possible strategy in the development of low-overpotential methods for the electroreduction of C02 is to employ a catalyst in solution in the electrochemical cell, A few systems are known that employ homogeneous catalysts and these are based primarily on transition metal complexes. A particularly efficient catalyst is (Bipy)Re[CO]3Cl, where Bipy is 2,2 bipyridine, which was first reported as such by Hawecker et al. in 1983. In fact, this first report concerned the photochemical reduction of C02 to CO. However, they reasoned correctly that the complex should also be capable of catalysing the electrochemical reduction reaction. In 1984, the same authors reported that (Bipy)Re[C013CI catalysed the reduction of C02 to CO in DMF/water/ tetraalkylammonium chloride or perchlorate with an average current efficiency of >90% at —1.25 V vs. NHE (c. —1.5V vs. SCE). The product analysis was performed by gas chromatography and 13C nmr and showed no other products. [Pg.308]

C. Homogeneous Catalysts for the Fischer-Tropsch and the Water Gas Shift Reactions... [Pg.73]

Homogeneous catalysts have now been reported for hydrogenation of carbon monoxide, a combustion product of coal (see Section VI,B). More effective catalysts will undoubtedly be discovered in the near future. Polynuclear or, at least, binuclear sites are favored for reduction of the triple bond in carbon monoxide (see Section VI,B), and this together with the popular parallelism to heterogeneous systems, has renewed interest in metal clusters as catalysts (see Section VI). A nickel cluster is the first catalyst reported for mild (and selective) hydrogenation of the triple bond in isocyanide (see Section VI,A). The use of carbon monoxide and water as an alternative hydrogen source is reattracting interest (see Section VI,C). [Pg.389]

Transition metal compounds in various form such as metal carbonyls 0), carbonyl clusters (2), Pt(II) chloride/tin chloride (3) PtLn (L=PR3) (4), etc. have been proposed as homogeneous catalysts for the water gas shift (wgs) reaction (eq. 1). Some of them are reportedly active at relatively low temperature (<150°)... [Pg.85]

In this context we postulated that the shift reaction might proceed catalytically according to a hypothetical cycle such as Scheme I. There are four key steps in Scheme I a) nucleophilic attack of hydroxide or water on coordinated CO to give a hydroxycarbonyl complex, b) decarboxylation to give the metal hydride, c) reductive elimination of H2 from the hydride and d) coordination of new CO. In addition, there are several potentially crucial protonation/deprotonation equilibria involving metal hydrides or the hydroxycarbonyl. The mechanistic details have been worked out (but only incompletely) for a couple of the alkaline solution WGSR homogeneous catalysts. In these cases,... [Pg.100]

Hydrogenation of C02 to formic acid could potentially proceed first by reduction to CO, followed by a reaction between CO and water to give formic acid, a reaction which is known (Eq. (3)). It is unlikely that this pathway to formic acid is common because very few homogeneous catalysts (primarily homoleptic carbonyl complexes) [71-73] have been reported for the hydrogenation of COz to CO, and because the few C02 hydrogenation catalysts that have deliberately been exposed to CO, in order to check whether this pathway is operating, have been poisoned as a result [18, 19, 31, 74]. [Pg.499]

Reduction of C02 past formic acid generates formaldehyde, methanol or methane (Eqs. (16-18)), and ethanol can be produced by homologation of the methanol. The liberation of water makes these reactions thermodynamically favorable but economically less favorable. The reductions typically require much higher temperatures than does the reduction to formic acid, and consequently few homogeneous catalysts are both kinetically capable and able to withstand the operating conditions. [Pg.506]


See other pages where Water homogeneous catalysts is mentioned: [Pg.135]    [Pg.342]    [Pg.1323]    [Pg.401]    [Pg.187]    [Pg.311]    [Pg.6]    [Pg.37]    [Pg.46]    [Pg.7]    [Pg.52]    [Pg.24]    [Pg.678]    [Pg.375]    [Pg.386]    [Pg.72]    [Pg.127]    [Pg.139]    [Pg.100]    [Pg.110]    [Pg.114]    [Pg.417]    [Pg.63]    [Pg.242]    [Pg.244]    [Pg.61]    [Pg.91]    [Pg.264]    [Pg.126]    [Pg.247]    [Pg.533]    [Pg.857]    [Pg.1286]    [Pg.1337]    [Pg.1352]    [Pg.1434]   
See also in sourсe #XX -- [ Pg.329 , Pg.330 , Pg.331 ]




SEARCH



Catalyst homogenous

Catalysts homogeneous

Water catalyst

Water on Homogeneous Catalysts

© 2024 chempedia.info