Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water hardness, removal

This produces sufficient concentrations of magnesium and calcium ions to render the water hard. The above reaction is readily reversed by boiling the water when the magnesium and calcium ions responsible for the hardness are removed as the insoluble carbonate. [Pg.132]

In a 500 ml. three-necked flask, fitted with a reflux condenser and mechanical stirrer, place 121 g. (126-5 ml.) of dimethylaniline, 45 g. of 40 per cent, formaldehyde solution and 0 -5 g. of sulphanilic acid. Heat the mixture under reflux with vigorous stirring for 8 hours. No visible change in the reaction mixture occurs. After 8 hours, remove a test portion of the pale yellow emulsion with a pipette or dropper and allow it to cool. The oil should solidify completely and upon boiling it should not smell appreciably of dimethylaniline if this is not the case, heat for a longer period. When the reaction is complete, steam distil (Fig. II, 41, i) the mixture until no more formaldehyde and dimethylaniline passes over only a few drops of dimethylaniline should distil. As soon as the distillate is free from dimethylaniline, pour the residue into excess of cold water when the base immediately solidifies. Decant the water and wash the crystalline solid thoroughly with water to remove the residual formaldehyde. Finally melt the solid under water and allow it to solidify. A hard yellowish-white crystalline cake of crude base, m,p. 80-90°, is obtained in almost quantitative yield. RecrystaUise from 250 ml. of alcohol the recovery of pure pp -tetramethyldiaminodiphenylmethane, m.p. 89-90°, is about 90 per cent. [Pg.987]

Precipitation softening processes are used to reduce raw water hardness, alkalinity, siHca, and other constituents. This helps prepare water for direct use as cooling tower makeup or as a first-stage treatment followed by ion exchange for boiler makeup or process use. The water is treated with lime or a combination of lime and soda ash (carbonate ion). These chemicals react with the hardness and natural alkalinity in the water to form insoluble compounds. The compounds precipitate and are removed from the water by sedimentation and, usually, filtration. Waters with moderate to high hardness and alkalinity concentrations (150—500 ppm as CaCO ) are often treated in this fashion. [Pg.259]

Calcium ion enters the system not ordy in the form of water hardness but also in the form of calcium salts contained in the sod. Other heavy-metal ions such as aluminum and ferric iron may also be present in the sod, and must be removed by an appropriate budder to achieve good sod removal. Effective budders for cotton washing are those for which the calcium dissociation constant, expressed as or —logif -, is >4 and preferably >7 (33). [Pg.529]

The practice of corrosion inhibition requires that the inhibitive species should have easy access to the metal surface. Surfaces should therefore be clean and not contaminated by oil, grease, corrosion products, water hardness scales, etc. Furthermore, care should be taken to avoid the presence of deposited solid particles, e.g. stones, swarf, building materials, etc. This ideal state of affairs is often difficult to achieve but there are many cases where less than adequate consideration has been given to the preparation of systems to receive inhibitive treatment. Acid treatments, notably with 3-5% citric acid, with or without associated detergent washes, are often recommended and adopted for cleaning systems prior to inhibition. However, it is not always appreciated that these treatments will not remove particulate material particularly when, as is often the case, the material is insoluble in acids. [Pg.801]

Supply of MU water for a medium-pressure (450 psig) WT boiler, from a surface water source with very variable suspended solids and hardness (sugar refinery, South Africa). The process used is a. carbonate removal using hot-lime precipitation softening coupled with silica adsorption by magnesia addition b. clarification in anthracite filters and c. cation ion-exchange for the balance of hardness removal. [Pg.309]

A two phase process, in which the feedstock (e.g., petroleum) was mixed with water and an organic solvent to improve denitrogenation of aromatic nitrogen compounds [102], led to an improvement of the process. Additionally, a surfactant was used to increase the interfacial area. Carbazole and quinoline and their alkyl derivatives were used as primary compounds for demonstration. The biocatalyst is used in resting stage and is continuously fed to the system to keep the reaction rate at an acceptable level. It was observed that quinoline was hardly removed under the conditions at which carbazole was decomposed and assimilated. [Pg.340]

Calcined clays are hard clays which have been heat treated to remove the combined water. The removal of any surface bound entity from the clay particles improves the capacity to improve the electrical resistance of rubber compounds. Calcinated clays also reduce compound water... [Pg.144]

The electrolyte effect for the adsorption of anionic surfactants which leads to an enhancement of soil removal is valid only for low water hardness, i.e. low concentrations of calcium ions. High concentrations of calcium ions can lead to a precipitation of calcium surfactant salts and reduce the concentration of active molecules. Therefore, for many anionic surfactants the washing performance decreases with lower temperatures in the presence of calcium ions. This effect can be compensated by the addition of complexing agents or ion exchangers. [Pg.96]

Anion exchangers are also used for softening hard water by removing undesirable anions. [Pg.161]

Multimedia filters, which consist of a top layer of coarse and low density anthracite, layers of silica, and then dense finest medium vitreous silicate, remove about 98% of particulates >20 tm. These filters are regularly back-washed to avoid buildup of particulates. Finer filters (S-lO tm) are used to remove suspended matter and colloidal materials. To prevent scaling due to water hardness, sodium ions generated from brine are exchanged with calcium and magnesium ions in the water. Activated carbon or metabisulfite is used to remove chlorine. [Pg.298]

In Fig. 8, the soil removal from woolens by various technically important surfactants are presented as a function of the water hardness favorable... [Pg.15]

Once treated effluent leaves the WWTP, further degradation of the residual PhC APIs may still occur in surface water bodies. In fact, as mentioned above, if a substance is light sensitive, photodecomposition may contribute to its further removal once in the environment. Phototransformation easily takes place in clear surface water, and the effectiveness of this process is strictly correlated to the intensity and frequency of available light [53, 70]. Nonetheless, this process may be affected by other parameters, specifically pH, water hardness, location, season and latitude [71, 72]. [Pg.151]

Practical considerations and implementation. Most investigations involve the use of distilled/deionised water with KNO3 as the nitrate ion source thereby avoiding any potential impact of water hardness and dissolved salts on the catalytic removal of nitrates. It has been pointed out that in the presence of anions such as S04 and bicarbonates, which may be present in tap-water at concentrations of above 90 ppm, reduced nitrate reduction rates are to be expected as a result of competitive anion adsorption. Pintar and co-workers have indicated that nitrate removal rates are reduced when using drinking water as opposed to distilled water. Chloride ion is known to reduce the rate of nitrate removal while the choice of cation as counter ion influences the rate in the order, < Na < Ca < Mg + <... [Pg.58]

Mix the Liquid Citric Acid-50% with an equal volume of water. Slowly add the ammonium hydroxide solution. The neutralization should be done cautiously and under agitation, as the reaction is exothermic. Add Cellosolve, surfactant, remaining water, fragrance and dye. The formula is suitable for a pump spray. Bathtub, sinks, faucets and other hard surfaces should be sprayed from a distance of about 10 inches. For maximum effectiveness, the deposited cleaner fluid should be left at work for at least five minutes and then rinsed off with water or removed with a wet cloth or sponge. [Pg.3]

Let s say that the cooling-water outlet temperature from the condenser was 140°F. This is bad. The calcium carbonates in the cooling water will begin to deposit, as water-hardness deposits, inside the tubes. It is best to keep the cooling-water outlet temperature below 125°F, to retard such deposits. Increasing the pumparound heat removal will lower the cooling-water outlet temperature. [Pg.138]


See other pages where Water hardness, removal is mentioned: [Pg.194]    [Pg.324]    [Pg.194]    [Pg.324]    [Pg.824]    [Pg.525]    [Pg.163]    [Pg.407]    [Pg.529]    [Pg.246]    [Pg.745]    [Pg.272]    [Pg.485]    [Pg.92]    [Pg.824]    [Pg.421]    [Pg.64]    [Pg.467]    [Pg.101]    [Pg.564]    [Pg.119]    [Pg.300]    [Pg.412]    [Pg.294]    [Pg.15]    [Pg.12]    [Pg.564]    [Pg.102]    [Pg.824]    [Pg.407]    [Pg.132]    [Pg.243]    [Pg.13]    [Pg.345]   
See also in sourсe #XX -- [ Pg.274 , Pg.275 ]

See also in sourсe #XX -- [ Pg.274 , Pg.275 ]




SEARCH



Hardness water

Water removal

© 2024 chempedia.info