Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water earth metals

Forms water-soluble alkali and alkaline earth metal salts. Heating with KCN gives benzonitrile and phenol is formed by fusion with NaOH or KOH. Further sulphonation at 250°C gives benzene-1,3-disulphonic acid. [Pg.56]

Lanthanum is silvery white, malleable, ductile, and soft enough to be cut with a knife. It is one of the most reactive of the rare-earth metals. It oxidizes rapidly when exposed to air. Cold water attacks lanthanum slowly, while hot water attacks it much more rapidly. [Pg.128]

Cerium is an iron-gray lustrous metal. It is malleable, and oxidizes very readily at room temperature, especially in moist air. Except for europium, cerium is the most reactive of the rare-earth metals. It decomposes slowly in cold water and rapidly in hot water. [Pg.173]

As with other rare-earth metals, except for lanthanum, europium ignites in air at about 150 to I8O0C. Europium is about as hard as lead and is quite ductile. It is the most reactive of the rare-earth metals, quickly oxidizing in air. It resembles calcium in its reaction with water. Bastnasite and monazite are the principal ores containing europium. [Pg.177]

Salt Formation. Salt-forming reactions of adipic acid are those typical of carboxylic acids. Alkali metal salts and ammonium salts are water soluble alkaline earth metal salts have limited solubiUty (see Table 5). Salt formation with amines and diamines is discussed in the next section. [Pg.240]

Difluoroethanol is prepared by the mercuric oxide cataly2ed hydrolysis of 2-bromo-l,l-difluoroethane with carboxyHc acid esters and alkaH metal hydroxides ia water (27). Its chemical reactions are similar to those of most alcohols. It can be oxidi2ed to difluoroacetic acid [381-73-7] (28) it forms alkoxides with alkaH and alkaline-earth metals (29) with alkoxides of other alcohols it forms mixed ethers such as 2,2-difluoroethyl methyl ether [461-57-4], bp 47°C, or 2,2-difluoroethyl ethyl ether [82907-09-3], bp 66°C (29). 2,2-Difluoroethyl difluoromethyl ether [32778-16-8], made from the alcohol and chlorodifluoromethane ia aqueous base, has been iavestigated as an inhalation anesthetic (30,31) as have several ethers made by addition of the alcohol to various fluoroalkenes (32,33). Methacrylate esters of the alcohol are useful as a sheathing material for polymers ia optical appHcations (34). The alcohol has also been reported to be useful as a working fluid ia heat pumps (35). The alcohol is available ia research quantities for ca 6/g (1992). [Pg.293]

Rubidium metal alloys with the other alkaU metals, the alkaline-earth metals, antimony, bismuth, gold, and mercury. Rubidium forms double haUde salts with antimony, bismuth, cadmium, cobalt, copper, iron, lead, manganese, mercury, nickel, thorium, and 2iac. These complexes are generally water iasoluble and not hygroscopic. The soluble mbidium compounds are acetate, bromide, carbonate, chloride, chromate, fluoride, formate, hydroxide, iodide. [Pg.278]

Bina Selenides. Most biaary selenides are formed by beating selenium ia the presence of the element, reduction of selenites or selenates with carbon or hydrogen, and double decomposition of heavy-metal salts ia aqueous solution or suspension with a soluble selenide salt, eg, Na2Se or (NH 2S [66455-76-3]. Atmospheric oxygen oxidizes the selenides more rapidly than the corresponding sulfides and more slowly than the teUurides. Selenides of the alkah, alkaline-earth metals, and lanthanum elements are water soluble and readily hydrolyzed. Heavy-metal selenides are iasoluble ia water. Polyselenides form when selenium reacts with alkah metals dissolved ia hquid ammonia. Metal (M) hydrogen selenides of the M HSe type are known. Some heavy-metal selenides show important and useful electric, photoelectric, photo-optical, and semiconductor properties. Ferroselenium and nickel selenide are made by sintering a mixture of selenium and metal powder. [Pg.332]

BeryUium reacts with fused alkaU haUdes releasing the alkaU metal until an equUibrium is estabUshed. It does not react with fused haUdes of the alkaline-earth metals to release the alkaline-earth metal. Water-insoluble fluoroberyUates, however, are formed in a fused-salt system whenever barium or calcium fluoride is present. BeryUium reduces haUdes of aluminum and heavier elements. Alkaline-earth metals can be used effectively to reduce beryUium from its haUdes, but the use of alkaline-earths other than magnesium [7439-95-4] is economically unattractive because of the formation of water-insoluble fluoroberyUates. Formation of these fluorides precludes efficient recovery of the unreduced beryUium from the reaction products in subsequent processing operations. [Pg.66]

The most common method of purification of inorganic species is by recrystallisation, usually from water. However, especially with salts of weak acids or of cations other than the alkaline and alkaline earth metals, care must be taken to minimise the effect of hydrolysis. This can be achieved, for example, by recrystallising acetates in the presence of dilute acetic acid. Nevertheless, there are many inorganic chemicals that are too insoluble or are hydrolysed by water so that no general purification method can be given. It is convenient that many inorganic substances have large temperature coefficients for their solubility in water, but in other cases recrystallisation is still possible by partial solvent evaporation. [Pg.389]

Hydrogen can be prepared by the reaction of water or dilute acids on electropositive metals such as the alkali metals, alkaline earth metals, the metals of Groups 3, 4 and the lanthanoids. The reaction can be explosively violent. Convenient laboratory methods employ sodium amalgam or calcium with water, or zinc with hydrochloric acid. The reaction of aluminium or ferrosilicon with aqueous sodium hydroxide has also been used. For small-scale preparations the hydrolysis of metal hydrides is convenient, and this generates twice the amount of hydrogen as contained in the hydride, e.g. ... [Pg.38]

Arsenites of the alkali metals are very soluble in water, those of the alkaline earth metals less so, and those of the heavy metals are virtually insoluble. Many of the salts are obtained as meta-arsenites, e.g. NaAs02, which comprises polymeric chain anions formed by comer linkage of pyramidal ASO3 groups and held together by Na ions ... [Pg.575]

Metal sulfides vary enormously in their solubility in water. As expected, the (predominantly ionic) alkali metal sulfides and alkaline earth metal sulfides are quite soluble though there is appreciable hydrolysis which results in... [Pg.678]

Tabushi, I. Yamamura, K. Water Soluble Cyclophanes as Hosts and Catalysts, 113,145-182 (1983). Takagi, M., and Ueno, K. Crown Compounds as Alkali and Alkaline Earth Metal Ion Selective Chromogenic Reagents. 121, 39-65 (1984). [Pg.264]

Section 20.1 deals with the processes by which these metals are obtained from their principal ores. Section 20.2 describes the reactions of the alkali and alkaline earth metals, particularly those with hydrogen, oxygen, and water. Section 20.3 considers the redox chemistry of the transition metals, their cations (e.g., Fe2+, Fe3+), and their oxoanions (e.g., Cr042-). ... [Pg.535]

The compounds formed by the reaction of hydrogen with the alkali and alkaline earth metals contain H- ions for example, sodium hydride consists of Na+ and H- ions. These white crystalline solids are often referred to as saline hydrides because of their physical resemblance to NaCL Chemically, they behave quite differently from sodium chloride for example, they react with water to produce hydrogen gas. Typical reactions are... [Pg.542]

Alkaline earth metal A metal in Group 2 of file periodic table, 31 hydrogen reactions with, 542 oxygen reactions with, 543-544 reactions, 54U, 552q water reactions with, 542... [Pg.681]

PEO is found to be an ideal solvent for alkali-metal, alkaline-earth metal, transition-metal, lanthanide, and rare-earth metal cations. Its solvating properties parallel those of water, since water and ethers have very similar donicites and polarizabilities. Unlike water, ethers are unable to solvate the anion, which consequently plays an important role in polyether polymer-electrolyte formation. [Pg.502]

Trace amounts of other metals such as iron (Fe), aluminum (Al), and manganese (Mn) further contribute to the total hardness, although these are not alkaline earth metals. These metals may be present in natural water supplies as ... [Pg.221]

Zeolites are naturally occurring hydrous aluminum-sodium silicates in porous granule form. They are capable of exchanging their sodium base for calcium or magnesium and of expelling these alkaline earth metals for sodium by treatment with salt. Thus, they are a type of ion-exchange media. (Some zeolites act as molecular sieves by adsorption of water and polar compounds.)... [Pg.326]

Another marked physical difference between sulphides and sulphoxides (or sulphones) is that sulphoxides (and lower alkyl sulphones) are hygroscopic and dissolve quite readily in water or protic solvents such as alcohols, and even more so lower alkyl or alkyl aryl sulphoxides are almost freely miscible with water. This can be accounted for by the formation of the strong hydrogen bond between the S—O bond in the sulphoxides and water molecules. Moreover, lower alkyl sulphoxides and sulphones such as dimethyl sulphoxide (DMSO) or sulpholene can dissolve a number of metallic salts, especially those of alkali and alkaline earth metals, and hence these compounds have been widely utilized as versatile and convenient solvents in modern organic chemistry26 (Table 3). [Pg.544]

The alcohol sulfate salts of monovalent metals, such as sodium and potassium, crystallize as anhydrous salts from aqueous solutions, whereas salts of bivalent alkaline earth metals form hydrates with 1 mol of water less than that of the equivalent inorganic sulfate [68]. [Pg.236]

Because barium is an alkaline earth metal, Ba(OH)2 dissociates almost completely in water to provide OH ions. [Pg.522]

Foreign cations can increasingly lower the yield in the order Fe, Co " < Ca " < Mn < Pb " [22]. This is possibly due to the formation of oxide layers at the anode [42], Alkali and alkaline earth metal ions, alkylammonium ions and also zinc or nickel cations do not effect the Kolbe reaction [40] and are therefore the counterions of choice in preparative applications. Methanol is the best suited solvent for Kolbe electrolysis [7, 43]. Its oxidation is extensively inhibited by the formation of the carboxylate layer. The following electrolytes with methanol as solvent have been used MeOH-sodium carboxylate [44], MeOH—MeONa [45, 46], MeOH—NaOH [47], MeOH—EtsN-pyridine [48]. The yield of the Kolbe dimer decreases in media that contain more than 4% water. [Pg.94]


See other pages where Water earth metals is mentioned: [Pg.137]    [Pg.507]    [Pg.545]    [Pg.300]    [Pg.220]    [Pg.52]    [Pg.337]    [Pg.152]    [Pg.326]    [Pg.198]    [Pg.206]    [Pg.90]    [Pg.66]    [Pg.77]    [Pg.118]    [Pg.297]    [Pg.269]    [Pg.294]    [Pg.541]    [Pg.695]    [Pg.699]    [Pg.401]    [Pg.288]    [Pg.208]    [Pg.205]    [Pg.44]    [Pg.428]   
See also in sourсe #XX -- [ Pg.667 ]




SEARCH



Alkaline earth metals reaction with water

© 2024 chempedia.info