Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water continued vapor pressure

Distillation. Distillation separates volatile components from a waste stream by taking advantage of differences in vapor pressures or boiling points among volatile fractions and water. There are two general types of distillation, batch or differential distillation and continuous fractional or multistage distillation (see also Distillation). [Pg.161]

Single-Effect Evaporators The heat requirements of a singleeffect continuous evaporator can be calculated by the usual methods of stoichiometry. If enthalpy data or specific heat and heat-of-solution data are not available, the heat requirement can be estimated as the sum of the heat needed to raise the feed from feed to product temperature and the heat required to evaporate the water. The latent heat of water is taken at the vapor-head pressure instead of at the product temperature in order to compensate partiaUv for any heat of solution. If sufficient vapor-pressure data are available for the solution, methods are available to calculate the true latent heat from the slope of the Diihriugliue [Othmer, Ind. Eng. Chem., 32, 841 (1940)]. [Pg.1145]

With many electrolytes, AP is so large that the solid, when exposed to moist air, picks up water (deliquesces). This occurs with calcium chloride, whose saturated solution has a vapor pressure only 30% that of pure water. If dry CaCl2 is exposed to air in which the relative humidity is greater than 30%, it absorbs water and forms a saturated solution. Deliquescence continues until the vapor pressure of the solution becomes equal to that of the water in the air. [Pg.275]

Yet, it is reasonable to suppose that water molecules from the liquid are still evaporating, even at equilibrium. Molecules in the liquid have no way of knowing that the partial pressure of the vapor is equal to the vapor pressure. In the gas phase, the randomly moving molecules continue to strike the surface of the liquid and condense. Equilibrium corresponds to a perfect balance between this continuing evaporation and condensation. Then no net changes can be detected. ... [Pg.145]

Figure 9-3 shows this schematically. If the partial pressure of the vapor is less than the equilibrium value (as in Figure 9-3A), the rate of evaporation exceeds the rate of condensation until the partial pressure of the vapor equals the equilibrium vapor pressure. If we inject an excess of vapor into the bottle (as in Figure 9-3Q, condensation will proceed faster than evaporation until the excess of vapor has condensed. The equilibrium vapor pressure corresponds to that concentration of water vapor at which condensation and evaporation occur at exactly the same rate (as in Figure 9-3B). At equilibrium, microscopic processes continue but in a balance that yields no macroscopic changes. Figure 9-3 shows this schematically. If the partial pressure of the vapor is less than the equilibrium value (as in Figure 9-3A), the rate of evaporation exceeds the rate of condensation until the partial pressure of the vapor equals the equilibrium vapor pressure. If we inject an excess of vapor into the bottle (as in Figure 9-3Q, condensation will proceed faster than evaporation until the excess of vapor has condensed. The equilibrium vapor pressure corresponds to that concentration of water vapor at which condensation and evaporation occur at exactly the same rate (as in Figure 9-3B). At equilibrium, microscopic processes continue but in a balance that yields no macroscopic changes.
The boiling of water results in the continuous absorption of heat energy until a point is reached, for any particular pressure, at which the liquid (water) changes into a gas (steam). This boiling point or (heat) saturation temperature occurs when the water vapor pressure is equal to the local pressure. [Pg.4]

The system is dynamic because molecular transfers continue, and it has reached equilibrium because no further net change occurs. The pressure of the vapor at dynamic equilibrium is called the vapor pressure (v p) of the substance. The vapor pressure of any substance increases rapidly with temperature because the kinetic energies of the molecules increase as the temperature rises. Table lists the vapor pressures for water at various temperatures. We describe intermolecular forces and vapor pressure in more detail in Chapter 11. [Pg.328]

There is a continuing effort to extend the long-established concept of quantitative-structure-activity-relationships (QSARs) to quantitative-structure-property relationships (QSPRs) to compute all relevant environmental physical-chemical properties (such as aqueous solubility, vapor pressure, octanol-water partition coefficient, Henry s law constant, bioconcentration factor (BCF), sorption coefficient and environmental reaction rate constants from molecular structure). [Pg.15]

The pressure-temperature-composition diagram presented by Morey is shown in Fig. 8. The vapor pressure of pure water (on the P-T projection) terminates at the critical point (647 K, 220 bar). The continuous curve represents saturated solutions of NaCl in water, i.e., there is a three-phase equilibrium of gas-solution-solid NaCl. The gas-phase pressure maximizes over 400 bar at around 950 K. Olander and Liander s data for a 25 wt. % NaCl solution are shown, and T-X and P X projections given. At the pressure maximum, the solution phase contains almost 80% NaCl. [Pg.157]

Both SILC and SILP offer the advantage over SAPC of using ionic liquids instead of water. The low vapor pressure ensures that the supported phase remains liquid under the reaction conditions, and that it is retained during continuous flow operation. [Pg.142]

Let us consider the vapor pressure of water as a continuous function of temperature for the range of 0 to 100 °C. These data are also monotonic increasing and convex. Let us use as training set the data from 20 to 80 °C at 10 °C intervals, which is a set of seven points. Let us we propose a quadratic equation, and the regression result of... [Pg.170]

A continuous-flow reactor with a fixed catalyst bed was employed at pressurized conditions. Gaseous dimethyl ether was supplied to the reactor at its vapor pressure with carbon monoxide while liquid reactants such as methyl acetate, methyl iodide, and water were fed with microfeeders. Methyl acetate used in this experiment was dehydrated by Molecular Sieve 5A before use. A part of the reaction mixture was sampled with a heated syringe and was analyzed by gas chromatography. [Pg.177]

The vapor pressure of a liquid dictates when a substance will boil. In fact, the boiling point of a substance is defined as the temperature at which the vapor pressure equals the external pressure. Typically, the external pressure is equal to atmospheric pressure, and we define the normal boiling point as the temperature when the vapor pressure equals 1 atmosphere. If we consider water heated on a stove, the bubbles that develop in the liquid contain water vapor that exerts a pressure at the specific vapor pressure of water at that temperature. For example, when water reaches 60°C, any bubbles that form will contain vapor at 149 mm Hg (see Table 9.4). At this pressure, and any other pressure below 760 mm Hg (1 atmosphere), the external pressure of 1 atmosphere causes the bubbles to immediately collapse. As the temperature of the water rises, the vapor pressure continually increases. At 100°C, the vapor pressure inside the bubbles finally reaches 760 mm Hg. The vapor pressure is now sufficient to allow the bubbles to rise to the surface without collapsing. At higher elevations where the external pressure is lower, liquids boil at a lower temperature. At the top of a 15,000-foot peak, water boils at approximately 85°C rather than 100°C. This increases the cooking time for items, as noted in the directions of many packaged food. If the external pressure is increased, the boiling temperature also increases. This is the concept behind a pressure cooker. The sealed cooker allows pressure to build up inside it... [Pg.108]

PRODUCED WELLHEAD FLUIDS are complex mixtures of hydrogen and carbon compounds with differing densities, vapor pressures and other characteristics. The wcllstrcam undergoes continuous pressure and temperature reduction as it leaves the reservoir. Gases evolve from liquids, water vapor condenses and part of the well stream changes from a liquid to bubbles, mist and free gas. Gas carries liquid bubbles and the liquid carries gas bubbles. Physical separation of these phases is one of the basic operations in production, processing and treatment of oil and gas. [Pg.91]

The value of E in Equations 1, 2, and 3, as obtained from Equation 3, depends on terms already described and on other factors. The ratio wdJwmo is the pounds of dry air circulating in the distiller per pound of water distilled. Assuming the air is continually saturated, alternately at basin temperature and cover temperature, this ratio depends only on vapor pressures, which depend in turn on the two temperatures. The term (Hab — Hag) may be replaced by Cp(tb — tg), and... [Pg.165]


See other pages where Water continued vapor pressure is mentioned: [Pg.203]    [Pg.64]    [Pg.388]    [Pg.362]    [Pg.279]    [Pg.460]    [Pg.457]    [Pg.223]    [Pg.220]    [Pg.273]    [Pg.327]    [Pg.385]    [Pg.331]    [Pg.189]    [Pg.176]    [Pg.398]    [Pg.657]    [Pg.830]    [Pg.169]    [Pg.143]    [Pg.397]    [Pg.137]    [Pg.229]    [Pg.142]    [Pg.21]    [Pg.229]    [Pg.830]    [Pg.87]    [Pg.102]    [Pg.103]    [Pg.30]    [Pg.932]    [Pg.555]    [Pg.457]    [Pg.41]    [Pg.414]   
See also in sourсe #XX -- [ Pg.198 , Pg.461 , Pg.463 , Pg.465 ]




SEARCH



Pressurized water

Water continued) vaporization

Water pressure

Water vapor

Water vapor pressure

Water vaporization

© 2024 chempedia.info