Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific vapor pressures

Outside of their very high resistance to auto-ignition, the aviation gasolines are characterized by the following specifications vapor pressure between 385 and 490 mbar at 37.8°C, a distillation range (end point less than 170°C), freezing point (-60°C) and sulfur content of less than 500 ppm. [Pg.232]

The vapor pressure of a liquid dictates when a substance will boil. In fact, the boiling point of a substance is defined as the temperature at which the vapor pressure equals the external pressure. Typically, the external pressure is equal to atmospheric pressure, and we define the normal boiling point as the temperature when the vapor pressure equals 1 atmosphere. If we consider water heated on a stove, the bubbles that develop in the liquid contain water vapor that exerts a pressure at the specific vapor pressure of water at that temperature. For example, when water reaches 60°C, any bubbles that form will contain vapor at 149 mm Hg (see Table 9.4). At this pressure, and any other pressure below 760 mm Hg (1 atmosphere), the external pressure of 1 atmosphere causes the bubbles to immediately collapse. As the temperature of the water rises, the vapor pressure continually increases. At 100°C, the vapor pressure inside the bubbles finally reaches 760 mm Hg. The vapor pressure is now sufficient to allow the bubbles to rise to the surface without collapsing. At higher elevations where the external pressure is lower, liquids boil at a lower temperature. At the top of a 15,000-foot peak, water boils at approximately 85°C rather than 100°C. This increases the cooking time for items, as noted in the directions of many packaged food. If the external pressure is increased, the boiling temperature also increases. This is the concept behind a pressure cooker. The sealed cooker allows pressure to build up inside it... [Pg.108]

Methods to Estimate p Solely from Molecular Structure Methods of this type are available with the GCM approaches. All methods presented in Section 7.3 allow temperature-dependent estimation of pv in the region specified. For certain homologous series, specific vapor pressure-structure-temperature relationships exist. For example, Woodman et al. [27] have reported the following relationship for a, w-dinitriles (3 < Nqh1 < 8) ... [Pg.82]

For non-polar components like hydrocarbons, the results are very satisfactory for calculations of vapor pressure, density, enthalpy, and specific, heat and reasonably close for viscosity and conductivity provided that is greater than 0.10. [Pg.111]

Maxwell and Bonnel (1955) proposed a method to calculate the vapor pressure of pure hydrocarbons or petroleum fractions whose normal boiling point and specific gravity are known. It is iterative if the boiling point is greater than 366.5 K ... [Pg.159]

The criterion retained up to now in the specifications is not the true vapor pressure, but an associated value called the Reid vapor pressure, RVP. The procedure is to measure the relative pressure developed by the vapors from a sample of motor fuel put in a metallic cylinder at a temperature of 37.8°C. The variations characteristic of the standard method are around 15 millibar in repeatability and 25 millibar in reproducibility. [Pg.189]

Vapor pressure specifications for gasolines in Europe (Distribution by class). [Pg.189]

Regarding product characteristics, European specifications were established in 1992. They concern mainly the motor octane number (MON) that limits the olefin content and which should be higher than 89, and the vapor pressure, tied to the C3/C4 ratio which should be less than 1550 mbar at 40°C (ISO 4256). On the other hand, to ensure easy vehicle start-ups, a minimum vapor pressure for winter has been set which is different for each country and depends on climatic conditions. Four classes. A, B, C, and D, are thus defined in Europe with a minimum vapor pressure of 250 mbar, respectively, at -10°C (A), -5 C (B), 0°C (C) and -t-10°C (Z)). France has chosen class A. [Pg.230]

Their satisfactory combustion requires no particular characteristics and the specifications are solely concerned with safety considerations (vapor pressure) and the C3 and C4 hydrocarbon distribution. [Pg.232]

The different cuts obtained are collected their initial and final distillation temperatures are recorded along with their weights and specific gravities. Other physical characteristics are measured for the light fractions octane number, vapor pressure, molecular weight, PONA, weight per cent sulfur, etc., and, for the heavy fractions, the aniline point, specific gravity, viscosity, sulfur content, and asphaltene content, etc. [Pg.331]

It is possible to calculate the properties of wider cuts given the characteristics of the smaller fractions when these properties are additive in volume, weight or moles. Only the specific gravity, vapor pressure, sulfur content, and aromatics content give this advantage. All others, such as viscosity, flash point, pour point, need to be measured. In this case it is preferable to proceed with a TBP distillation of the wider cuts that correspond with those in an actual refinery whose properties have been measured. [Pg.331]

A saturated aqueous solution in contact with an excess of a definite solid phase at a given temperature will maintain constant humidity in an enclosed space. Table 11.4 gives a number of salts suitable for this purpose. The aqueous tension (vapor pressure, in millimeters of Hg) of a solution at a given temperature is found by multiplying the decimal fraction of the humidity by the aqueous tension at 100 percent humidity for the specific temperature. For example, the aqueous tension of a saturated solution of NaCl at 20°C is 0.757 X 17.54 = 13.28 mmHg and at 80°C it is 0.764 X 355.1 = 271.3 mmHg. [Pg.1083]

Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

Physical Properties. Physical properties of anhydrous hydrogen fluoride are summarized in Table 1. Figure 1 shows the vapor pressure and latent heat of vaporization. The specific gravity of the Hquid decreases almost linearly from 1.1 at —40°C to 0.84 at 80°C (4). The specific heat of anhydrous HF is shown in Figure 2 and the heat of solution in Figure 3. [Pg.190]

Ref. 87. Test method ASTM E96-35T (at vapor pressure for 25.4 p.m film thickness). Values are averages only and not for specification purposes. Original data converted to SI units using vapor pressure data from Ref. 90. [Pg.352]

Amylenes. Amylenes (C monoolefins) produce alkylates with a research octane in the range of 90—93. In the past, amylenes have not been used widely as an industrial alkylation charge, although in specific instances, alkylation with amylenes has been practiced (23). In the future, alkylation with amylenes will become more important as limits are placed on the vapor pressure and light olefin content of gasolines. [Pg.47]

In water Water in Water a2eotrope, wt %/°C Boiling range, °C Vapor pressure at 25°C, kPa Specific gravity at 20°C Refractive index at 20°C Freezing point, °C... [Pg.267]


See other pages where Specific vapor pressures is mentioned: [Pg.127]    [Pg.208]    [Pg.127]    [Pg.328]    [Pg.431]    [Pg.370]    [Pg.127]    [Pg.208]    [Pg.127]    [Pg.328]    [Pg.431]    [Pg.370]    [Pg.177]    [Pg.190]    [Pg.192]    [Pg.448]    [Pg.530]    [Pg.222]    [Pg.226]    [Pg.226]    [Pg.386]    [Pg.70]    [Pg.352]    [Pg.182]    [Pg.373]    [Pg.455]    [Pg.2]    [Pg.343]    [Pg.495]    [Pg.500]    [Pg.236]    [Pg.66]    [Pg.290]   
See also in sourсe #XX -- [ Pg.7 , Pg.11 ]

See also in sourсe #XX -- [ Pg.7 , Pg.11 ]




SEARCH



Pressure specifications

Specific pressure

Vapor pressure specific vaporization enthalpy

Vapor pressure specific vaporization heat

© 2024 chempedia.info