Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water activity reaction system

Volcanic injection of large quantities of sulfate aerosol into the stratosphere offers the opportunity to examine the sensitivity of ozone depletion and species concentrations to a major perturbation in aerosol surface area (Hofmann and Solomon 1989 Johnston et al. 1992 Prather 1992 Mills et al. 1993). The increase in stratospheric aerosol surface area resulting from a major volcanic eruption can lead to profound effects on C10 -induced ozone depletion chemistry. Because the heterogeneous reaction of N205 and water on the surface of stratospheric aerosols effectively removes N02 from the active reaction system, less N02 is available to react with CIO to form the reservoir species C10N02. As a result, more CIO is present in active CIO cycles. Therefore an increase in stratospheric aerosol surface area, as from a volcanic eruption, can serve to make the chlorine present more effective at ozone depletion, even if no increases in chlorine are occurring. [Pg.186]

Our primary interest in this review is in those calculations where the dynamics of all atoms, reactant and solvent, are followed in full detail. One will quickly see that the number of studies that have done this is smaller than might have been expected, given the notable increase in computational power since the first simulation of Bunker and Jacobson. We will review both thermally and nonthermally activated reaction systems in solvents as simple as Lennard-Jones models of rare gases to those as complex as fully flexible models of liquid water. [Pg.69]

Typically, an acetanilide (1 mol. equiv.) was treated with the Vilsmeier reagent generated from POCI3 (7 mol. equiv.) and V,V-dimethylformamide (DMF, 2.5 mol. equiv.) at 75 °C for 4 - 20 h. The reaction products were readily obtained by filtration after pouring the reaction mixture onto ice-water minor reaction products were isolated after basification of the filtrate. A variety of acetanilides were studied under these optimised reaction conditions and some significant observations were noted. Activated acetanilides 3 [e.g. R = 4-Me (70%), 4-OMe (56%)] reacted faster and in better yield to give quinolines 4 than other strongly deactivated systems 3 [e.g. R = 4-Br (23%), 4-Cl (2%), 4-NO2 (0%)] — in these cases, formamidines 5 and acrylamides 6 were the major reaction products. [Pg.443]

Cationic phosphine ligands containing guanidiniumphenyl moieties were originally developed in order to make use of their pronounced solubility in water [72, 73]. They were shown to form active catalytic systems in Pd-mediated C-C coupling reactions between aryl iodides and alkynes (Castro-Stephens-Sonogashira reaction) [72, 74] and Rh-catalyzed hydroformylation of olefins in aqueous two-phase systems [75]. [Pg.237]

When either the organic solvent or the ionic liquid is used as pure solvent, proper control over the water content, or rather the water activity, is of crucial importance, as a minimum amount is necessary to maintain the enzyme s activity. For ionic liquids, a reaction can be operated at constant water activity by use of the same methods as established for organic solvents [17]. [BMIM][PFg] or [BMIM][(CF3S02)2N], for example, may be used as pure solvents and in biphasic systems. Water-miscible ionic liquids, such as [BMIM][BF4] or [MMIM][MeS04], can be used in the second case. [Pg.337]

To maintain enzymatic activity a minimal amount of water has to be present, best described by the water activity. However, water present in the reaction system may cause hydrolysis of some ionic liquids. [Pg.338]

Unlike in the case of conventional organic solvents, most research groups prepare the ionic liquids themselves. This may be the reason why different results are sometimes obtained with the same ionic liquids. Park and Kazlauskas performed a washing procedure with aqueous sodium carbonate and found improved reaction rates, but this might also be related to a more precisely defined water content/water activity in the reaction system [22]. [Pg.338]

Entries 7, 8, and 10 describe so-called Idnetically controlled syntheses starting from activated substrates such as ethyl esters or lactose. In two reaction systems it was possible to demonstrate that ionic liquids can also be useful in a thermodynamically controlled synthesis starting with the single components (Entry 11) [39]. In both cases, as with the results presented in entry 6, the ionic liquids were used with addition of less than 1 % water, necessary to maintain the enzyme activity. The yields observed were similar or better than those obtained with conventional organic solvents. [Pg.342]

PEMFC)/direct methanol fuel cell (DMFC) cathode limit the available sites for reduction of molecular oxygen. Alternatively, at the anode of a PEMFC or DMFC, the oxidation of water is necessary to produce hydroxyl or oxygen species that participate in oxidation of strongly bound carbon monoxide species. Taylor and co-workers [Taylor et ah, 2007b] have recently reported on a systematic study that examined the potential dependence of water redox reactions over a series of different metal electrode surfaces. For comparison purposes, we will start with a brief discussion of electronic structure studies of water activity with consideration of UHV model systems. [Pg.106]

The ACTIV-OX system has been developed to meet the needs for a safe and controllable chlorine dioxide system for application in small water using systems. The system instantaneously delivers over 90% of the available chlorine dioxide at a pH of 4 compared to other systems which require lower pH and or longer reaction times (Fig 1 and 2). [Pg.34]

The hydration of propylene with sulfuric acid catalyst in high-temperature water was investigated using a flow reaction system.31 The major product is isopropanol. A biopolymer-metal complex, wool-supported palladium-iron complex (wool-Pd-Fe), has been found to be a highly active catalyst for the hydration of some alkenes to the corresponding alcohols. The yield is greatly affected by the Pd/Fe molar ratio in the wool-Pd-Fe complex catalyst and the catalyst can be reused several times without remarkable change in the catalytic activity.32... [Pg.48]

A large batch exploded violently (without flame) during vacuum distillation at 90-100°C/20-25 mbar. Since the distilled product contained up to 12% butyroni-trile, it was assumed that the the oxime had undergone the Beckman rearrangement to butyramide and then dehydrated to the nitrile. The release of water into a system at 120°C would generate excessive steam pressure which the process vessel could not withstand. The rearrangement may have been catalysed by metallic impurities [1]. This hypothesis was confirmed in a detailed study, which identified lead oxide and rust as active catalysts for the rearrangement and dehydration reactions [2],... [Pg.553]

Lin and coworkers disclosed that, at room temperature, nonenzymatic chemical addition was still observed in a water-organic solvent biphasic reaction system, though the volume of aqueous phases was relative small. Lin developed a method of preparing an active enzyme meal that contained essential water to retain its power for catalysis and found a new catalytic reaction system by application of the prepared meal in a nonaqueous monophasic organic medium (Figure 5.7). There was no problem over a wide range of temperature (from 0-30 °C) when the reactions were carried out under micro-aqueous conditions [50]. [Pg.111]

Fig. 24.8. Evolution of fluid chemistry during the simulated evaporation of seawater as an equilibrium system at 25 °C, calculated using the Harvie-Mpller-Weare activity model. Upper figures show variation in salinity, water activity (aw), and ionic strength (/) over the reaction path in Figure 24.7 bottom figure shows how the fluid s bulk composition varies. Fig. 24.8. Evolution of fluid chemistry during the simulated evaporation of seawater as an equilibrium system at 25 °C, calculated using the Harvie-Mpller-Weare activity model. Upper figures show variation in salinity, water activity (aw), and ionic strength (/) over the reaction path in Figure 24.7 bottom figure shows how the fluid s bulk composition varies.
There seems to be several mechanisms leading to the activity loss oxidation of cobalt metal, sintering of cobalt metal particles as well as sintering of the support and formation of stable cobalt-support metal oxides (silicates or aluminates). Oxidation by water is a key issue, possibly occurring on all supports and on unsupported cobalt. A thermodynamic analysis of this effect was reported by van Steen et al.,40 and they describe the FTS reaction system in terms of reactions (1) and (2) below ... [Pg.17]

This paper describes the successful synthesis and examination of polyfr-(amino /9-thiosulfate) ether] (PATE), a water soluble photolabile polymer. Evidence has been presented that the PATE polymer is zwitterionic and forms weak associations in aqueous solutions. Heat treatment of PATE films result in extensive crosslinking, presumably through a disulfide bond. This work presents strong evidence that PATE is activated by deep UV radiation, and that a disulfide crosslink is formed. Sensitization experiments demonstrate that the crosslinking reaction can be induced by a triplet sensitizer. Finally, preliminary results point out the potential for application of PATE films as active photoimaging systems. [Pg.302]


See other pages where Water activity reaction system is mentioned: [Pg.3188]    [Pg.459]    [Pg.228]    [Pg.408]    [Pg.342]    [Pg.211]    [Pg.158]    [Pg.71]    [Pg.162]    [Pg.328]    [Pg.568]    [Pg.9]    [Pg.57]    [Pg.111]    [Pg.418]    [Pg.123]    [Pg.194]    [Pg.181]    [Pg.194]    [Pg.28]    [Pg.14]    [Pg.96]    [Pg.6]    [Pg.32]    [Pg.83]    [Pg.110]    [Pg.142]    [Pg.143]    [Pg.478]    [Pg.380]    [Pg.305]    [Pg.102]    [Pg.119]    [Pg.190]   
See also in sourсe #XX -- [ Pg.639 , Pg.640 ]




SEARCH



Water activation

Water active

Water activity

Water activity reactions

© 2024 chempedia.info