Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Volume particulates

The appropriate weight of surfactant and cosurfactant was dissolved in HPLC grade water (J.T. Baker), and ethyl acetate was then added (2% by volume). Particulate matter was removed from the solu-... [Pg.124]

Because of the complexity of combustion kinetics, coupling kinetics and hydrodynamics into a single comprehensive model is not generally pursued. Instead, many successful hydrodynamic studies vary operational parameters and study the effect on combustion performance parameters. Moe et al. [22] characterized combustion performance with seven parameters (1) heat transfer, (2) combustion efficiency, (3) bottom ash/total ash, (4) bed grain size, (5) limestone utilization, sulfur capture, and Ca/S (6) CO emissions, and (7) NO and NjO emissions. Eight operational variables they listed that impact one or more of the performance parameters were (1) bed temperature—affects carbon burnout, emissions, sorbent utilization, and heat absorption (2) primary/secondary air split—impacts NO emissions, temperature distribution, and pressure drop (3) excess air—changes thermal efficiency, emissions, and carbon burnout (4) solids circulation rate—controls load, heat absorption pattern, heat transfer coefficient, and pressure drop (S) fuel size—determines carbon burnout, bed vs. fly ash split, and pressure drop (6) limestone size—determines Ca/S ratio required and bed vs. fly ash split (7) Ca/S ratio—impacts sulfur capture, limestone utilization, waste/disposal volumes, particulate generation, and emissions and, (8) load—effects heat absorption, emission, carbon burnout, thermal efficiency, and temperature distribution. [Pg.276]

Nonvolatile compounds are normally present either as solid particulates or bound to solid particulates. Samples are collected by pulling large volumes of gas through a filtering unit where the particulates are collected on glass fiber filters. [Pg.196]

Particulate gravimetry is commonly encountered in the environmental analysis of water, air, and soil samples. The analysis for suspended solids in water samples, for example, is accomplished by filtering an appropriate volume of a well-mixed sample through a glass fiber filter and drying the filter to constant weight at 103-105 °C. [Pg.264]

Total airborne particulates are determined using a high-volume air sampler equipped with either cellulose fiber or glass fiber filters. Samples taken from urban environments require approximately 1 h of sampling time, but samples from rural environments require substantially longer times. [Pg.264]

Additional research for both ethanol and methanol showed that the amount of ignition improver could be reduced by systems increa sing engine compression (63). Going from 17 1 to 21 1 reduced the amount of TEGDN requited for methanol from 5% by volume to 3%. Ignition-improved methanol exhibited very low exhaust emissions compared to diesels particulate emissions were eliminated except for small amounts associated with engine oil, NO was even lower with increased compression, and CO and hydrocarbons were also below diesel levels. [Pg.433]

Extrusion. The filtered, preheated polymer solution is deHvered to the spinneret for extmsion at constant volume by accurate metering pumps. The spinnerets are of stainless steel or another suitable metal and may contain from thirteen to several hundred precision-made holes to provide a fiber of desired si2e and shape. AuxUiary filters are inserted in front of the fixture that holds the spinneret and in the spinneret itself to remove any residual particulate matter in the extmsion solution. [Pg.296]

Plastics. In the plastics industry, the term filler refers to particulate materials that are added to plastic resins in relatively large, ie, over 5%, volume loadings. Except in certain specialty or engineering plastics appHcations, plastics compounders tend to formulate with the objective of optimizing properties at minimum cost rather than maximizing properties at optimum cost. Table 2 fists typical plastic fillers and their uses. [Pg.369]

Gas purification processes fall into three categories the removal of gaseous impurities, the removal of particulate impurities, and ultrafine cleaning. The extra expense of the last process is only justified by the nature of the subsequent operations or the need to produce a pure gas stream. Because there are many variables in gas treating, several factors must be considered (/) the types and concentrations of contaminants in the gas (2) the degree of contaminant removal desired (J) the selectivity of acid gas removal required (4) the temperature, pressure, volume, and composition of the gas to be processed (5) the carbon dioxide-to-hydrogen sulfide ratio in the gas and (6) the desirabiUty of sulfur recovery on account of process economics or environmental issues. [Pg.209]

ASTM D4536-91, Standard Test Methodfor High Volume Samplingfor Solid Particulate Matter and Determination of Particulate E, American Society for Testing Materials, Philadelphia, Pa., 1991. [Pg.307]

Sohd rocket propellants represent a very special case of a particulate composite ia which inorganic propellant particles, about 75% by volume, are bound ia an organic matrix such as polyurethane. An essential requirement is that the composite be uniform to promote a steady burning reaction (1). Further examples of particulate composites are those with metal matrices and iaclude cermets, which consist of ceramic particles ia a metal matrix, and dispersion hardened alloys, ia which the particles may be metal oxides or intermetallic compounds with smaller diameters and lower volume fractions than those ia cermets (1). The general nature of particulate reinforcement is such that the resulting composite material is macroscopicaHy isotropic. [Pg.4]

Creep Resistsince. Studies on creep resistance of particulate reinforced composites seem to indicate that such composites are less creep resistant than are monolithic matrices. Silicon nitride reinforced with 40 vol % TiN has been found to have a higher creep rate and a reduced creep strength compared to that of unreinforced silicon nitride. Further reduction in properties have been observed with an increase in the volume fraction of particles and a decrease in the particle size (20). Similar results have been found for SiC particulate reinforced silicon nitride (64). Poor creep behavior has been attributed to the presence of glassy phases in the composite, and removal of these from the microstmcture may improve the high temperature mechanical properties (64). [Pg.58]

To meet the cleanliness need, all elements of the process are controlled to minimize sources of contamination. Air normally contains a large volume of contaminants in the form of dirt, dust, and poUen. The human body sheds a large volume of particulate contaminants such as skin, phlegm, hair, etc. [Pg.124]

Description A tray or compartment diyer is an enclosed, insulated housing in which solids are placed upon tiers of trays in the case of particulate solids or stacked in piles or upon shelves in the case of large objects. Heat transfer may be direct from gas to sohds by circulation of large volumes of hot gas or indirect by use of heated shelves, radiator coils, or refractoiy walls inside the housing. In indirec t-heat units, excepting vacuum-shelf equipment, circulation of a small quantity of gas is usually necessary to sweep moisture vapor from the compartment and prevent gas saturation and condensation. Compartment units are employed for the heating and diying of lumber, ceramics, sheet materi s (supported on poles), painted and metal objects, and all forms of particulate solids. [Pg.1190]


See other pages where Volume particulates is mentioned: [Pg.184]    [Pg.263]    [Pg.264]    [Pg.770]    [Pg.89]    [Pg.257]    [Pg.373]    [Pg.384]    [Pg.395]    [Pg.412]    [Pg.433]    [Pg.187]    [Pg.146]    [Pg.54]    [Pg.183]    [Pg.78]    [Pg.188]    [Pg.197]    [Pg.199]    [Pg.202]    [Pg.174]    [Pg.233]    [Pg.251]    [Pg.301]    [Pg.319]    [Pg.491]    [Pg.248]    [Pg.55]    [Pg.248]    [Pg.249]    [Pg.254]    [Pg.80]    [Pg.92]    [Pg.146]    [Pg.1427]    [Pg.1428]    [Pg.1440]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



High-volume sampler, particulate

High-volume sampler, particulate measurement

Particulate matter small-volume injectable

© 2024 chempedia.info