Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Volatiles kinetics

Wolters et al. (2003) observed that volatilization kinetics of the fungicide fenpropimorph express a clear correlation between volatilization rates and soil moisture content. Volatilization rates reached a maximum 24 hr after application... [Pg.159]

Mendybaev R. A., Beckett J. R., Grossman L., Stolper E., Cooper R. F., and Bradley J. P. (2002) Volatilization kinetics of silicon carbide in reducing gases an experimental study with applications to the survival of presolar grains in the solar nebula. Geochim. Cosmochim. Acta 66, 661-682. [Pg.40]

Comp. Family Relative Volatility Kinetic Comp. diam. (A) Loading Comp. (mol/g) ... [Pg.270]

Kinetic measurements were performed employii UV-vis spectroscopy (Perkin Elmer "K2, X5 or 12 spectrophotometer) using quartz cuvettes of 1 cm pathlength at 25 0.1 C. Second-order rate constants of the reaction of methyl vinyl ketone (4.8) with cyclopentadiene (4.6) were determined from the pseudo-first-order rate constants obtained by followirg the absorption of 4.6 at 253-260 nm in the presence of an excess of 4.8. Typical concentrations were [4.8] = 18 mM and [4.6] = 0.1 mM. In order to ensure rapid dissolution of 4.6, this compound was added from a stock solution of 5.0 )j1 in 2.00 g of 1-propanol. In order to prevent evaporation of the extremely volatile 4.6, the cuvettes were filled almost completely and sealed carefully. The water used for the experiments with MeReOj was degassed by purging with argon for 0.5 hours prior to the measurements. All rate constants were reproducible to within 3%. [Pg.123]

Until now we have been discussing the kinetics of catalyzed reactions. Losses due to volatility and side reactions also raise questions as to the validity of assuming a constant concentration of catalyst. Of course, one way of avoiding this issue is to omit an outside catalyst reactions involving carboxylic acids can be catalyzed by these compounds themselves. Experiments conducted under these conditions are informative in their own right and not merely as means of eliminating errors in the catalyzed case. As noted in connection with the discussion of reaction (5.G), the intermediate is stabilized by coordination with a proton from the catalyst. In the case of autoprotolysis by the carboxylic acid reactant, the rate-determining step is probably the slow reaction of intermediate [1] ... [Pg.288]

Cure kinetics of thermosets are usually deterrnined by dsc (63,64). However, for phenohc resins, the information is limited to the early stages of the cure because of the volatiles associated with the process. For pressurized dsc ceUs, the upper limit on temperature is ca 170°C. Differential scanning calorimetry is also used to measure the kinetics and reaction enthalpies of hquid resins in coatings, adhesives, laminations, and foam. Software packages that interpret dsc scans in terms of the cure kinetics are supphed by instmment manufacturers. [Pg.301]

Dynamic mechanical analysis provides a useful technique to study the cure kinetics and high temperature mechanical properties of phenoHc resins. The volatile components of the resin do not affect the scan or limit the temperature range of the experiment. However, uncured samples must be... [Pg.301]

Tetrahydrofuran (THF) is usually the solvent of choice for poly (acrylates). It is an excellent thermodynamic as well as kinetic solvent, its only drawback being its volatility and flammability. [Pg.540]

Since high temperatures and a nitrogen atmosphere are necessary to obtain measurable rates of polyesterification and to remove the reaction water, a loss of volatile reactants can hardly be avoided, especially in early stages of polyesterification. In the last stages, the decrease of the concentration of the volatile reactants can be of the same order of magnitude as their concentration. Consequently, the ultimate points of the kinetic plot have possibly no significance. [Pg.58]

It has been assumed in the deduction of (1) that the solute is an ideal gas, or at least a volatile substance. The extension of the result to solutions of substances like sugar, or metallic salts, must therefore be regarded as depending on the supposition that the distinction between volatile and non-volatile substances is one of degree rather than of kind, because a finite (possibly exceedingly small) vapour pressure may be attributed to every substance at any temperature above absolute zero. This assumption is justified by the known continuity of pleasure in measurable regions, and by the kinetic theory of gases. [Pg.285]

Since the free energy of a molecule in the liquid phase is not markedly different from that of the same species volatilized, the variation in the intrinsic reactivity associated with the controlling step in a solid—liquid process is not expected to be very different from that of the solid—gas reaction. Interpretation of kinetic data for solid—liquid reactions must, however, always consider the possibility that mass transfer in the homogeneous phase of reactants to or products from, the reaction interface is rate-limiting [108,109], Kinetic aspects of solid—liquid reactions have been discussed by Taplin [110]. [Pg.15]

The kinetics of many decompositions are conveniently studied from measurements of the pressure of the gas evolved in a previously evacuated and sealed constant volume system. It is usually assumed, and occasionally confirmed, that gas release is directly proportional to a, so that the method is most suitable for reactants which yield a single volatile product by the irreversible breakdown of a substance that does not sublime on heating in vacuum. A cold trap is normally maintained between the heated reactant and the gauge to condense non-volatile products (e.g. water vapour) and impurities. The method has found wide application, notably in studies of the decomposition of azides, permanganates, etc., and has been successfully developed as an undergraduate experiment [114—116]. [Pg.19]

Constant rate thermo gravimetry has been described [134—137] for kinetic studies at low pressure. The furnace temperature, controlled by a sensor in the balance or a pressure gauge, is increased at such a rate as to maintain either a constant rate of mass loss or a constant low pressure of volatile products in the continuously evacuated reaction vessel. Such non-isothermal measurements have been used with success for decomposition processes the rates of which are sensitive to the prevailing pressure of products, e.g. of carbonates and hydrates. [Pg.20]

Carbide decompositions yield no volatile product and, therefore, many of the more convenient experimental techniques based on gas evolution or mass change cannot be applied. This is a probable reason for the relative lack of information about the kinetics of reaction of these and other compounds which are correctly classifed under this heading, such as borides, silicides, etc. [Pg.152]

Ni3C decomposition is included in this class on the basis of Doremieux s conclusion [669] that the slow step is the combination of carbon atoms on reactant surfaces. The reaction (543—613 K) obeyed first-order [eqn. (15)] kinetics. The rate was not significantly different in nitrogen and, unlike the hydrides and nitrides, the mobile lattice constituent was not volatilized but deposited as amorphous carbon. The mechanism suggested is that carbon diffuses from within the structure to a surface where combination occurs. When carbon concentration within the crystal has been decreased sufficiently, nuclei of nickel metal are formed and thereafter reaction proceeds through boundary displacement. [Pg.154]

There have been few satisfactory demonstrations that decompositions of hydrides, carbides and nitrides proceed by interface reactions, i.e. either nucleation and growth or contracting volume mechanisms. Kinetic studies have not usually been supplemented by microscopic observations and this approach is not easily applied to carbides, where the product is not volatile. The existence of a sigmoid a—time relation is not, by itself, a proof of the occurrence of a nucleation and growth process since an initial slow, or very slow, process may represent the generation of an active surface, e.g. poison removal, or the production of an equilibrium concentration of adsorbed intermediate. The reactions included below are, therefore, tentative classifications based on kinetic indications of interface-type processes, though in most instances this mechanistic interpretation would benefit from more direct experimental support. [Pg.155]


See other pages where Volatiles kinetics is mentioned: [Pg.92]    [Pg.70]    [Pg.249]    [Pg.251]    [Pg.130]    [Pg.135]    [Pg.92]    [Pg.70]    [Pg.249]    [Pg.251]    [Pg.130]    [Pg.135]    [Pg.2933]    [Pg.131]    [Pg.256]    [Pg.46]    [Pg.126]    [Pg.342]    [Pg.508]    [Pg.315]    [Pg.503]    [Pg.346]    [Pg.226]    [Pg.335]    [Pg.527]    [Pg.266]    [Pg.786]    [Pg.332]    [Pg.157]    [Pg.137]    [Pg.115]    [Pg.995]    [Pg.22]    [Pg.41]    [Pg.98]    [Pg.110]    [Pg.158]    [Pg.161]    [Pg.167]   
See also in sourсe #XX -- [ Pg.758 , Pg.759 , Pg.760 ]




SEARCH



© 2024 chempedia.info