Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin tissue differentiation

The specific role of vitamin A in tissue differentiation has been an active area of research. The current thinking, developed in 1979, involves initial dehvery of retinol by holo-B >V (retinol-binding protein) to the cell cytosol (66). Retinol is then ultimately oxidized to retinoic acid and binds to a specific cellular retinoid-binding protein and is transported to the nucleus. Retinoic acid is then transferred to a nuclear retinoic acid receptor (RAR), which enhances the expression of a specific region of the genome. Transcription occurs and new proteins appear during the retinoic acid-induced differentiation of cells (56). [Pg.103]

A most important function of vitamin A is in the control of cell differentiation and mrnover. PsA-trans-retinoic acid and 9-cw-retinoic acid (Figure 45-1) regulate growth, development, and tissue differentiation they have different actions in different tissues. Like the steroid hormones and vitamin D, retinoic acid binds to nuclear receptors that bind to response elements of DNA and regulate the transcription of specific genes. There are two families of nuclear retinoid receptors the retinoic acid receptors (RARs) bind all-rrijw-retinoic acid or 9-c -retinoic acid, and the retinoid X receptors (RXRs) bind 9-cw-retinoic acid. [Pg.483]

The activity of vitamin A is related to vision process, tissue differentiation, growth, reproduction, and the immune system. A deficiency of this micronutrient mainly leads to visual problems, impaired immune function, and growth retardation in children. Hypervitaminosis could lead to hepatotoxicity, affect bone metabolism, disrupt lipid metabolism, and teratogenicity [417]. The isomerization of P-carotene, due to technological processes in foods, leads to a reduction of the vitamin A activity it is therefore important to analyze it. [Pg.608]

Vitamin A is a necessary micronutrient in the diet for vision, growth, tissue differentiation, reproduction, and maintenance of the immune system. A deficiency of vitamin A affects reproduction in both male and female experimental animals. In the male, retinol is required for normal spermatogenesis in the female, the vitamin is necessary for both conception and normal development of the fetus. [Pg.322]

Retinoic acid modulates gene expression and tissue differentiation, acting by way of nuclear receptors. Historically, there was confusion between the effects of deficiency of vitamins A and D by the 1950s, it was believed that the confusion had been resolved. Elucidation of the nuclear actions of the two vitamins has shown that, in many systems, the two act in concert, forming retinoid-vitamin D heterodimeric receptors hypervitaminosis A can antagonize the actions of vitamin D. [Pg.30]

In vitro, and in experimental animals, vitamin A has anticancer action related to its role in modulating gene expression and tissue differentiation. It retards the initiation and growth of some experimental tumors. However, it only shows these effects at toxic levels, and a number of synthetic analogs. [Pg.30]

Apart from the effects on vision, most of the effects of vitamin A deficiency (Section 2.4) involve derangements of cell proliferation and differentiation (squamous metaplasia and keratinization of epithelia), dedifferentiation, and loss of ciliated epithelia. Retinoic acid has both a general role in growth and a specific morphogenic role in development and tissue differentiation. These functions are the result of genomic actions, modulating gene expression by activation of nuclear receptors. Both deficiency and excess of retinoic acid cause severe developmental abnormalities. [Pg.54]

Vitamin A was the first vitamin to be discovered, initially as an essential dietary factor for growth. It has roles in vision (as the prosthetic group of the light-sensitive proteins in the retina) and the regulation of gene expression and tissue differentiation. Deficiency is a major problem of public health in large areas of the world. [Pg.332]

The best-known function of vitamin A, and historically the first to be defined, is in vision. More recently, retinoic acid has also been shown to have a major function in regulation of gene expression and tissue differentiation. [Pg.335]

Coenzyme and hormone roles—New information suggests that vitamin A (1) acts in a coenzyme role, as for instance in the form of intermediates in glycoprotein synthesis and (2) functions like steroid hormones, with a role in the cell nuclei, leading to tissue differentiation. [Pg.1079]

Vitamin A is essential for vision, adequate growth and tissue differentiation. [Pg.365]

Dihydroxyvitamin (283) is the endogenous ligand for the vitamin receptor (VDR). It modulates genomic function in a tissue and developmentaHy specific manner and affects ceU proliferation, differentiation, and mineral homeostasis (74). Vitamin mobilizes calcium from the bone to maintain plasma Ca " levels. Vitamin and VDR are present in the CNS where they may play a role in regulating Ca " homeostasis. Vitamin D has potent immunomodulatory activity in vivo. [Pg.568]

Fohc acid is a precursor of several important enzyme cofactors required for the synthesis of nucleic acids (qv) and the metaboHsm of certain amino acids. Fohc acid deficiency results in an inabiUty to produce deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and certain proteins (qv). Megaloblastic anemia is a common symptom of folate deficiency owing to rapid red blood cell turnover and the high metaboHc requirement of hematopoietic tissue. One of the clinical signs of acute folate deficiency includes a red and painhil tongue. Vitamin B 2 folate share a common metaboHc pathway, the methionine synthase reaction. Therefore a differential diagnosis is required to measure foHc acid deficiency because both foHc acid and vitamin B 2 deficiency cause... [Pg.41]

Summary term for a number of steroid hormones and their precursors with differentiation-inducing activity in many tissues. As regards bone, three components are relevant cholecalciferol ( vitamin D ) 25-hydroxyvi-taminD3 (calcidiol) and 1,25-dihydroxy vitamin D3 (calcitriol). The latter is the biologically active form and increases both intestinal calcium absoiption and bone resorption. Vitamin D preparations are widely used for the treatment of osteoporosis. Daily supplementation with vitamin D reduces bone loss in postmenopausal women and hip fractures in elderly subjects. [Pg.1294]

The chemistry, metabolism, and clinical importance of folic acid have been the subject of many excellent reviews (A7, Gil, H14, H20, Rl). Folic acid deficiency leads to a macrocytic anemia and leucopenia. These symptoms are due to inadequate synthesis of nucleic acid. The synthesis of purine bases and of thymine, required for nucleic acid synthesis, is impaired in folic acid deficiency. Detection of folic acid activity in biologic fluids and tissues is of the utmost importance it distinguishes between the various anemias, e.g., those due to vitamin Bi2 or folic acid deficiency. Because morphology of the abnormal red cell does not help in diagnosing vitamin deficiency, one must rely on assay methods for differential diagnosis. Treatment of pernicious anemia with folic acid has led to subacute combined degeneration of the spinal cord despite... [Pg.217]

Vitamin A is essential for growth and development of cells and tissues. In its active form, retinoic acid (RA), it controls the regular differentiation as a ligand for retinoic acid receptors (RAR, RXR) and is involved in the integration (gap junction formation) of cell formations (Biesalski, 1996 Biesalski et al, 1999). Vitamin A plays a substantial role, especially in the respiratory epithelium and the lung. During moderate vitamin A deficiency, the incidence for diseases of the respiratory tract is considerably increased and repeated respiratory infections can be influenced therapeutically by a moderate vitamin A supplementation (Biesalski et ah, 2001 Greenberg et ah, 1997 John et ah, 1997). [Pg.181]

Phototherapy is the generic term covering therapies which use light either with or without a sensitiser. Those that do not require a sensitiser use the natural chromophores within the tissue to perform this function e.g. treatment of vitamin D deficiency in rickets, and neonatal jaundice). Those that do use an added sensitiser include photochemotherapy (largely psoriasis and skin disorders) and photodynamic therapy (currently mainly cancer). Photodynamic therapy is differentiated from photochemotherapy by its additional requirement for the presence of oxygen at molecular or ambient levels.In this text we will deal only with photodynamic therapy since, at the present time, this is the main driving force in phototherapy. ° ... [Pg.280]

Vitamin A is essential for proper functioning of the retina, for the integrity of epithelial tissue, for growth and bone development and for reproduction. For vision the active vitamin appears to be retinal as the chromophore of both rods and cones is 11-cis-retinal which, in combination with the protein opsin, forms the photoreceptor rhodopsin. Retinoic acid is the active form associated with growth, differentiation, and transformation. Both all-trans and 9-cis retinoic acid act as a steroid hormone to affect cellular differentiation, especially for morphogenesis, reproduction and for immune responses. At... [Pg.475]

It is vital for the functioning of retina. Vitamin A is essential for differentiation and growth of epithelial tissue. It enhances function of immune system and protect against development of certain malignancies. Different forms of vitamin A mediate different functions. [Pg.384]

Retinoid Hormones Retinoids are potent hormones that regulate the growth, survival, and differentiation of cells via nuclear retinoid receptors. The prohormone retinol is synthesized from vitamin A, primarily in liver (see Fig. 10-21), and many tissues convert retinol to the hormone retinoic acid (RA). [Pg.889]

All tissues are retinoid targets, as all cell types have at least one form of nuclear retinoid receptor. In adults, the most significant targets include cornea, skin, epithelia of the lungs and trachea, and the immune system. RA regulates the synthesis of proteins essential for growth or differentiation. Excessive vitamin A can cause birth defects, and pregnant women are advised not to use the retinoid creams that have been developed for treatment of severe acne. [Pg.889]

Maintenance of epithelial cells Vitamin A is essential for normal differentiation of epithelial tissues and mucus secretion. [Pg.382]


See other pages where Vitamin tissue differentiation is mentioned: [Pg.103]    [Pg.209]    [Pg.61]    [Pg.103]    [Pg.81]    [Pg.415]    [Pg.136]    [Pg.2135]    [Pg.147]    [Pg.318]    [Pg.327]    [Pg.66]    [Pg.191]    [Pg.24]    [Pg.185]    [Pg.197]    [Pg.1264]    [Pg.187]   
See also in sourсe #XX -- [ Pg.142 ]

See also in sourсe #XX -- [ Pg.142 ]

See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Differentiation, vitamin

Tissues vitamin

© 2024 chempedia.info