Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin B6 enzymes

Glycogen phosphorylases belong to the group of vitamin B6 enzymes bearing a catalytic mechanism that involves the participation of the phosphate group of pyridoxal-5 -phosphate (FTP). The proposed mechanism is a concerted one with a front-side attack, as can be seen in Fig. 5 [109]. In the forward direction, e.g.. [Pg.31]

Vitamin B6 enzyme models that can catalyze five types of reactions - transamination, racemization, decarboxylation, P-elimination and replacement, and aldolase-type reactions - have been reviewed. There are also five approaches to construct the vitamin B6 enzyme models (i) vitamin B6 augmented with basic or chiral auxiliary functional groups (ii) vitamin B6 having an artificial binding site (iii) vitamin B6-surfactant systems (iv) vitamin B6-polypeptide systems (v) polymeric and dendrimeric vitamin B6 systems. These model systems show rate enhancement and some selectivity in vitamin B6-dependent reactions, but they are still primitive compared with the real enzymes. We expect to see improved reaction rates and selectivities in future generations of vitamin B6 enzyme models. An additional goal, which has not received ade-... [Pg.60]

Liu L, Breslow R. Vitamin B6 enzyme models. In Artificial Enzymes. Breslow R, ed. 2005. Wiley-VCH. Weinheim, Germany, pp. 37-62. [Pg.1213]

This transamination reaction mimicks vitamin B6 enzymes. Other pyridoxamine analogs and their successful use in the asymmetric synthesis of natural amino acids by a transamination reaction have also been described18, l9. [Pg.934]

By contrast, the cytoplasmic decarboxylation of dopa to dopamine by the enzyme dopa decarboxylase is about 100 times more rapid (Am 4x 10 " M) than its synthesis and indeed it is difficult to detect endogenous dopa in the CNS. This enzyme, which requires pyridoxal phosphate (vitamin B6) as co-factor, can decarboxylate other amino acids (e.g. tryptophan and tyrosine) and in view of its low substrate specificity is known as a general L-aromatic amino-acid decarboxylase. [Pg.141]

Lequea et al. used the activity of tyrosine apodecarboxylase to determine the concentration of the enzyme cofactor pyridoxal 5 -phosphate (vitamin B6). The inactive apoenzyme is converted to the active enzyme by pyridoxal 5 -phosphate. By keeping the cofactor the limiting reagent in the reaction by adding excess apoenzyme and substrate, the enzyme activity is a direct measure of cofactor concentration. The enzymatic reaction was followed by detecting tyramine formation by LCEC. The authors used this method to determine vitamin B6 concentrations in plasma samples. [Pg.29]

Oxygenation and hydroxylation of a wide variety of biological materials almost always involves the participation of a metal ion, usually iron and sometimes copper. In one unique case, tryptophane pyrrolase, the iron is present as heme (75). The only dioxygenase enzyme reaction in which a metal ion has not been implicated is one involved in the degradation of vitamin B6 (16). [Pg.150]

These enzymes invariably involve a cofactor, pyridoxal phosphate (vitamin B6). In addition, pyridoxal phosphate is also required for most decarboxylations, racemizations, or elimination reactions in which an amino acid is a substrate. Pyridoxal phosphate is not involved in decarboxylations in which the substrate is not an amino acid. So if a question... [Pg.201]

The transsulfuration pathway is the major route for the metabolism of the sulfur-containing amino adds 674 Homocystinuria is the result of the congenital absence of cystathionine synthase, a key enzyme of the transsulfuration pathway 676 Homocystinuria can be treated in some cases by the administration of pyridoxine (vitamin B6), which is a cofactor for the cystathionine synthase reaction 676... [Pg.667]

Vitamin Ba (pyridoxine, pyridoxal, pyridoxamine) like nicotinic acid is a pyridine derivative. Its phosphorylated form is the coenzyme in enzymes that decarboxylate amino acids, e.g., tyrosine, arginine, glycine, glutamic acid, and dihydroxyphenylalanine. Vitamin B participates as coenzyme in various transaminations. It also functions in the conversion of tryptophan to nicotinic acid and amide. It is generally concerned with protein metabolism, e.g., the vitamin B8 requirement is increased in rats during increased protein intake. Vitamin B6 is also involved in the formation of unsaturated fatty acids. [Pg.212]

Allenic amino acids belong to the classical suicide substrates for the irreversible mechanism-based inhibition of enzymes [5], Among the different types of allenic substrates used for enzyme inhibition [128, 129], the deactivation of vitamin B6 (pyr-idoxal phosphate)-dependent decarboxylases by a-allenic a-amino acids plays an important role (Scheme 18.45). In analogy with the corresponding activity of other /3,y-unsaturated amino acids [102,130], it is assumed that the allenic amino acid 139 reacts with the decarboxylase 138 to furnish the imine 140, which is transformed into a Michael acceptor of type 141 by decarboxylation or deprotonation. Subsequent attack of a suitable nucleophilic group of the active site then leads to inhibition of the decarboxylase by irreversible formation of the adduct 142 [131,132]. [Pg.1025]

A group of enzymes which is particularly important in amino acid metabolism in the liver (and also in muscle) is the transaminases, (also called aminotransferases). These are vitamin B6 (pyridoxine) dependent enzymes which transfer an amino group from an amino acid to an oxo (keto) acid, thus ... [Pg.173]

As indicated in Section 6.3.3 and Table 6.2 the key control step is mediated by glycogen phosphorylase, a homodimeric enzyme which requires vitamin B6 (pyridoxal phosphate) for maximum activity, and like glycogen synthase (Section 6.2) is subject to both allosteric modulation and covalent modification. [Pg.213]

Muscle glycogen phosphorylase is one of the most well studied enzymes and was also one of the first enzymes discovered to be controlled by reversible phosphorylation (by E.G. Krebs and E. Fischer in 1956). Phosphorylase is also controlled allosterically by ATP, AMP, glucose and glucose-6-phosphate. Structurally, muscle glycogen phosphorylase is similar to its hepatic isoenzyme counterpart composed of identical subunits each with a molecular mass of approximately 110 kDa. To achieve full activity, the enzyme requires the binding of one molecule of pyridoxal phosphate, the active form of vitamin B6, to each subunit. [Pg.238]

Like folate and vitamin C, vitamin B6 (pyroxidine) is water soluble and like folate has several vitamers. Vitamin B6 may be involved in more bodily functions than any other nutrient (Tambasco-Studart et al., 2005), is a cofactor for many enzymes, especially those involved in protein metabolism, and is also a cofactor for folate metabolism. Vitamin B6 has anticancer activity (Theodoratou et al., 2008), is a strong antioxidant (Denslow et al., 2005), is involved in hemoglobin biosynthesis, lipid and glucose metabolism and immune and nervous system function. Possible consequences of deficiency include anemia, impaired immune function, depression, confusion, and dermatitis (Spinneker et al., 2007). Vitamin B6 deficiency is generally not a problem in the developed world, but there could be as yet poorly defined consequences of suboptimal intake particularly for the elderly. [Pg.404]

Pyridoxal phosphate is the coenzyme for the enzymic processes of transamination, racemization and decarboxylation of amino-acids, and for several other processes, such as the dehydration of serine and the synthesis of tryptophan that involve amino-acids (Braunstein, 1960). Pyridoxal itself is one of the three active forms of vitamin B6 (Rosenberg, 1945), and its biochemistry was established by 1939, in considerable part by the work of A. E. Braunstein and coworkers in Moscow (Braunstein and Kritzmann, 1947a,b,c Konikova et al 1947). Further, the requirement for the coenzyme by many of the enzymes of amino-acid metabolism had been confirmed by 1945. In addition, at that time, E. E. Snell demonstrated a model reaction (1) for transamination between pyridoxal [1] and glutamic acid, work which certainly carried with it the implication of mechanism (Snell, 1945). [Pg.4]

The B-group is a heterogeneous collection of water-soluble vitamins, most of which function as co-enzymes or are precursors of co-enzymes. The B-group vitamins are thiamin, riboflavin, niacin, biotin, pantothenic acid, pyridoxine (and related substances, vitamin B6), folate and cobalamin (and its derivatives, vitamin B12). [Pg.194]

Vitamin B6 occurs naturally in three related forms pyridoxine (6.26 the alcohol form), pyridoxal (6.27 aldehyde) and pyridoxamine (6.28 amine). All are structurally related to pyridine. The active co-enzyme form of this vitamin is pyridoxal phosphate (PLP 6.29), which is a co-factor for transaminases which catalyse the transfer of amino groups (6.29). PLP is also important for amino acid decarboxylases and functions in the metabolism of glycogen and the synthesis of sphingolipids in the nervous system. In addition, PLP is involved in the formation of niacin from tryptophan (section 6.3.3) and in the initial synthesis of haem. [Pg.201]

The homocystinurias are a group of disorders involving defects in the metabolism of homocysteine. The diseases are inherited as autosomal recessive illnesses, characterized by high plasma and urinary levels of homocysteine and methionine and low levels of cysteine. The most common cause of homocystinuria is a defect in the enzyme cystathionine /3-synthase, which converts homocysteine to cystathionine (Figure 20.21). Individuals who are homozygous for cystathionine [3-synthase deficiency exhibit ectopia lentis (displace ment of the lens of the eye), skeletal abnormalities, premature arte rial disease, osteoporosis, and mental retardation. Patients can be responsive or non-responsive to oral administration of pyridoxine (vitamin B6)—a cofactor of cystathionine [3-synthase. Bg-responsive patients usually have a milder and later onset of clinical symptoms compared with B6-non-responsive patients. Treatment includes restriction of methionine intake and supplementation with vitamins Bg, B, and folate. [Pg.271]

Vitamins B6, B12, and folate An elevated plasma homocysteine level is associated with increased cardiovascular risk (see p. 263). Homocysteine, which is thought to be toxic to the vascular endothelium, is converted into harmless amino acids by the action of enzymes that require the B vitamins—folate, B6 (pyridoxine), and B12 (cobalamin). Ingesting foods rich in these vitamins can lower homocysteine levels and possibly decrease the risk of car diovascular disease. Folate and B6 are found in leafy green veg etables, whole grains, some fruits, and fortified breakfast cereals. B12 comes from animal food, for example, meat, fish, and eggs. [Pg.363]

Vitamin B6 is a collective term for pyridoxine, pyridoxal, and pyridox amine, all derivatives of pyridine. They differ only in the nature of the functional group attached to the ring (Figure 28.10). Pyridoxine occurs primarily in plants, whereas pyridoxal and pyridoxamine are found in foods obtained from animals. All three compounds can serve as precur sors of the biologically active coenzyme, pyridoxal phosphate. Pyridoxal phosphate functions as a coenzyme for a large number of enzymes, par ticularly those that catalyze reactions involving amino acids. [Pg.376]

Vitamin B6 Pridoxine Pyridoxamine Pyridoxal Pyridoxal phosphate Cotacior for enzymes, particularly in 1 amino acid metabolism J. [Pg.390]

Vitamin B6 (pyridoxine, pyridoxamine, and pyridoxal) has the active form, pyridoxal phosphate. It functions as a cofactor for enzymes, particularly in amino acid metabolism. Deficiency of this vitamin is rare, but causes glossitis and neuropathy. The deficiency can be induced by isoniazid, which causes sensory neuropathy at high doses. [Pg.501]

Biotin-Containing Enzymes. 2. The Mechanism of Biotin Action 738 Box 14-C The Vitamin B6 Family Pyridoxine, Pyridoxal, and Pyridoxamine... [Pg.718]

The phosphate ester of the aldehyde form of vitamin B6, pyridoxal phosphate (pyridoxal-P or PLP), is required by many enzymes catalyzing reactions of amino acids and amines. The reactions are numerous, and pyridoxal phosphate is surely one of nature s most versatile catalysts. The story begins with biochemical transamination, a process of central importance in nitrogen metabolism. In 1937, Alexander Braunstein and Maria Kritzmann, in Moscow, described the transamination reaction by which amino groups can be transferred from one carbon skeleton to another.139 140 For example, the amino group of glutamate can be transferred to the carbon skeleton of oxaloacetate to form aspartate and 2-oxoglutarate (Eq. 14-24). [Pg.737]

Isonicotinyl hydrazide (INH), one of the most effective drugs against tuberculosis, is inhibitory to pyridoxal kinase, the enzyme that converts pyridoxal to PLP.C Apparently, the drug reacts with pyridoxal to form a hydrazone which blocks the enzyme. Pyridoxal kinase is not the primary target of INH in mycobacteria. However, patients on long-term isonicotinyl hydrazide therapy sometimes suffer symptoms of vitamin B6 deficiency. ... [Pg.738]


See other pages where Vitamin B6 enzymes is mentioned: [Pg.275]    [Pg.185]    [Pg.37]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.216]    [Pg.24]    [Pg.275]    [Pg.185]    [Pg.37]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.216]    [Pg.24]    [Pg.213]    [Pg.155]    [Pg.184]    [Pg.248]    [Pg.739]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



Enzyme Responses to Vitamin B6 Deficiency

Vitamin B6

Vitamin B6 Enzyme Models

Vitamin B6-dependent enzymes

© 2024 chempedia.info