Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allenic amino acids

Scheme 4.9 Synthesis of chiral allenic amino acids 40. Scheme 4.9 Synthesis of chiral allenic amino acids 40.
Scheme 18.10 Naturally occurring allenic amino acid (26) and allenic hydrocarbons (27). Scheme 18.10 Naturally occurring allenic amino acid (26) and allenic hydrocarbons (27).
Allenic amino acids belong to the classical suicide substrates for the irreversible mechanism-based inhibition of enzymes [5], Among the different types of allenic substrates used for enzyme inhibition [128, 129], the deactivation of vitamin B6 (pyr-idoxal phosphate)-dependent decarboxylases by a-allenic a-amino acids plays an important role (Scheme 18.45). In analogy with the corresponding activity of other /3,y-unsaturated amino acids [102,130], it is assumed that the allenic amino acid 139 reacts with the decarboxylase 138 to furnish the imine 140, which is transformed into a Michael acceptor of type 141 by decarboxylation or deprotonation. Subsequent attack of a suitable nucleophilic group of the active site then leads to inhibition of the decarboxylase by irreversible formation of the adduct 142 [131,132]. [Pg.1025]

Further variations of the Claisen rearrangement protocol were also utilized for the synthesis of allenic amino acid derivatives. Whereas the Ireland-Claisen rearrangement led to unsatisfactory results [133b], a number of variously substituted a-allenic a-amino acids were prepared by Kazmaier [135] by chelate-controlled Claisen rearrangement of ester enolates (Scheme 18.47). For example, deprotonation of the propargylic ester 147 with 2 equiv. of lithium diisopropylamide and transmetallation with zinc chloride furnished the chelate complex 148, which underwent a highly syn-stereoselective rearrangement to the amino acid derivative 149. [Pg.1027]

Scheme 18.47 Synthesis of the allenic amino acid derivative 149 by chelate-controlled Claisen rearrangement [135] (LDA= lithium diisopropylamide Cbz = benzyloxycarbonyl). Scheme 18.47 Synthesis of the allenic amino acid derivative 149 by chelate-controlled Claisen rearrangement [135] (LDA= lithium diisopropylamide Cbz = benzyloxycarbonyl).
Scheme 18.48 Synthesis of the allenic amino acid derivative 151 by 1,6-cuprate addition [15b] (Boc = tert-butoxycarbonyl). Scheme 18.48 Synthesis of the allenic amino acid derivative 151 by 1,6-cuprate addition [15b] (Boc = tert-butoxycarbonyl).
Allenic amino acid derivatives 50, which are of special interest as selective vitamin Bg decarboxylase inhibitors [35], are accessible through 1,6-cuprate addition to 2-amino-substituted enynes 49 (Eq. 4.22) [36]. Because of the low reactivity of these Michael acceptors, however, the reaction succeeds only with the most reactive cuprate the t-butyl cyano-Gilman reagent tBu2CuLi-LiCN. Nevertheless, the addition products are obtained with good chemical yields, and selective deprotection of either the ester or the amino functionality under acidic conditions provides the desired target molecules. [Pg.157]

The ester enolate Claisen rearrangements of amino acid propargylic esters (106) have been used137 to produce a-allenic amino acids (107), and y, d-un saturated amino acids... [Pg.499]

The preparation of other y-allenic amino acids by the aza-Cope rearrangement is described (1). [Pg.218]

Castelhano, A. L., Krantz, A. Allenic amino acids. 1. Synthesis of y-aiienic GABA by a novei aza-Cope rearrangement. J. Am. Chem. Soc. 1984, 106, 1877-1879. [Pg.539]

Upon the discovery of the allenic Alder-ene reaction, Brummond and coworkers have expanded this synthetic protocol to biologically relevant substrates. Allenynes 86 with amino acids as part of the tether were subjected to the Alder-ene reaction and afforded cross-conjugated trienes 87 in high yields. The Alder-ene reaction of these AT-alkynyl allenic amino acids was substantially faster (<10 min) than the previous substrate series. The authors attributed this rate... [Pg.835]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Albert, V. R., Allen, J. M., and Joh, T. H. (1987). A single gene codes for aromatic L-amino acid decarboxylase in both neuronal and non-neuronal tissues. J. Biol. Chem. 262 9404-9411. [Pg.82]

Thai, A. L. V., Coste, E., Allen, J. M., Palmiter, R. D., and Weber, M. J. (1993). Identification of a neuron-specific promoter of human aromatic L-amino acid decarboxylase gene. Mol. Brain. Res 17 227-238. [Pg.86]

A further example of the reductive allene formation in the synthesis of a non-alle-nic natural product was reported recently by VanBrunt and Standaert (Scheme 2.47) [81]. Treatment of the propargylic silyl ether 147 with LiAlH4 led to the syn-stereose-lective formation of the hydroxyallene 148, albeit with unsatisfactory chemical yield (25-50%). The latter was then transformed into the antibiotic amino acid furanomy-cin (150) by silver-mediated cycloisomerization to dihydrofuran 149 and elaboration of the side-chain. [Pg.76]

Similarly, treatment of a-tosylamino-substituted allene 83 provided the expected a-amino ester 232 in good yield [74], The analogous reaction could also be performed with methoxyallene-aziridine adduct 46, which furnished enantiomerically pure /3-amino acid 233 [46], Although the ozonolysis approach seems to constitute a versatile and flexible method for the construction of a-amino and a-hydroxy esters, only a few examples have been reported so far. [Pg.465]

The amino acid 26, which has been isolated from various Amanita fungi [35], is one of the few examples of a natural product with an achiral allene moiety (Scheme 18.10) and was prepared inter alia by Strecker synthesis and also substitution reactions of allenic bromides and phosphates [36]. Recently, even unfunctionalized allenes have been found in nature seven allenic hydrocarbons 27 with chain lengths ranging from C23 to C31 were isolated from the skin of the Australian scarab beetle Anti-trogus consanguineus and related species (Scheme 18.10) [37]. Also these allenes do not occur in enantiomerically pure form, but with enantiomeric excesses of86-89% ec. [Pg.1002]

Pharmacologically active allenic steroids have already been examined intensively for about 30 years [5], Thus, the only naturally occurring allenic steroid 107 had been synthesized 3 years before its isolation from Callyspongia diffusa and it had been identified as an inhibitor of the sterol biosynthesis of the silkworm Bombyx mori (Scheme 18.34) [86d], At this early stage, allenic 3-oxo-5,10-secosteroids of type 108 were also used for the irreversible inhibition of ketosteroid isomerases in bacteria, assuming that their activity is probably caused by Michael addition of a nucleophilic amino acid side chain of the enzyme at the 5-position of the steroid [103, 104]. Since this activity is also observed in the corresponding /3,y-acetylenic ketones, it can be rationalized that the latter are converted in vivo into the allenic steroids 108 by enzymatic isomerization [104, 105],... [Pg.1019]

The first syntheses of a-allenic a-amino acids [131,133] took advantage of Steg-lich s [134] protocol for the oxazole-Claisen rearrangement of unsaturated N-ben-zoylamino acid esters (Scheme 18.46). Thus, treatment of the propargylic ester 143 with triphenylphosphine and tetrachlormethane furnished the allenic oxazolone 144, which was converted into the amino acid derivative 145 by methanolysis. Stepwise deprotection finally led to the allenic DOPA analog 146, which shows a much higher decarboxylase-inhibiting activity than a-vinyl- and a-ethynyl-DOPA [133],... [Pg.1025]

Scheme 18.45 Postulated inhibition mechanism of pyridoxal phosphate-dependent decarboxylases by a-allenic a-amino acids. Scheme 18.45 Postulated inhibition mechanism of pyridoxal phosphate-dependent decarboxylases by a-allenic a-amino acids.
Additional routes to a-allenic-a-amino acids were described more recently and utilize radical [136] or transition metal-catalyzed [137] allenylations, in addition to copper-promoted Michael additions [15b]. Thus, sterically demanding amino acid derivatives (e.g. 151) are accessible via a 1,6-addition reaction of lithium di-tert-butyl-cyanocuprate with acceptor-substituted enynes of type 150 (Scheme 18.48). [Pg.1027]

In addition to a-allenic a-amino acids, the corresponding allenic derivatives of y-aminobutyric acid (GABA) have also been synthesized as potential inhibitors of the pyridoxal phosphate-dependent enzyme GABA-aminotransferase (Scheme 18.49) [131,138-142]. The synthesis of y-allenyl-GABA (152) and its methylated derivatives was accomplished through Crabbe reaction [131], aza-Cope rearrangement [138] and lactam allenylation [139], whereas the fluoroallene 153 was prepared by SN2 -reduc-tion of a propargylic chloride [141]. [Pg.1027]

In addition to the aforementioned allenic steroids, prostaglandins, amino acids and nucleoside analogs, a number of other functionalized allenes have been employed (albeit with limited success) in enzyme inhibition (Scheme 18.56) [154-159]. Thus, the 7-vinylidenecephalosporin 164 and related allenes did not show the expected activity as inhibitors of human leukocyte elastase, but a weak inhibition of porcine pancreas elastase [156], Similarly disappointing were the immunosuppressive activity of the allenic mycophenolic acid derivative 165 [157] and the inhibition of 12-lipoxygenase by the carboxylic acid 166 [158]. In contrast, the carboxyallenyl phosphate 167 turned out to be a potent inhibitor of phosphoenolpyruvate carboxylase and pyruvate kinase [159]. Hydrolysis of this allenic phosphate probably leads to 2-oxobut-3-enoate, which then undergoes an irreversible Michael addition with suitable nucleophilic side chains of the enzyme. [Pg.1031]


See other pages where Allenic amino acids is mentioned: [Pg.157]    [Pg.74]    [Pg.146]    [Pg.350]    [Pg.242]    [Pg.299]    [Pg.295]    [Pg.157]    [Pg.74]    [Pg.146]    [Pg.350]    [Pg.242]    [Pg.299]    [Pg.295]    [Pg.221]    [Pg.222]    [Pg.605]    [Pg.103]    [Pg.718]    [Pg.86]    [Pg.130]    [Pg.88]    [Pg.67]    [Pg.150]    [Pg.1018]    [Pg.1020]   
See also in sourсe #XX -- [ Pg.157 ]

See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Allenic acids

Amino-allenes

© 2024 chempedia.info