Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity amine

Polyamines can also be made by reaction of ethylene dichloride with amines (18). Products of this type are sometimes formed as by-products in the manufacture of amines. A third type of polyamine is polyethyleneimine [9002-98-6] which can be made by several routes the most frequently used method is the polymeriza tion of azitidine [151 -56 ] (18,26). The process can be adjusted to vary the amount of branching (see Imines, cyclic). Polyamines are considerably lower in molecular weight compared to acrylamide polymers, and therefore their solution viscosities are much lower. They are sold commercially as viscous solutions containing 1—20% polymer, and also any by-product salts from the polymerization reaction. The charge on polyamines depends on the pH of the medium. They can be quaternized to make their charge independent of pH (18). [Pg.33]

A second type of uv curing chemistry is used, employing cationic curing as opposed to free-radical polymerization. This technology uses vinyl ethers and epoxy resins for the oligomers, reactive resins, and monomers. The initiators form Lewis acids upon absorption of the uv energy and the acid causes cationic polymerization. Although this chemistry has improved adhesion and flexibility and offers lower viscosity compared to the typical acrylate system, the cationic chemistry is very sensitive to humidity conditions and amine contamination. Both chemistries are used commercially. [Pg.248]

Solids present in oil and synthetic muds must be kept wet with the nonaqueous phase to prevent coagulation and settling and mud instabiUty. Oil-wetting agents are normally incorporated in the basic mud package. These materials are typically amines or quaternary ammonium salts having hydrocarbon chains of 10 or more carbon atoms. They also render clays or lignites oil-wet for use in viscosity and filtration control (128). [Pg.183]

Nylon-4,6. This nylon is produced from diaminobutane and adipic acid. The process is similar to that for nylon-6,6, but the amine has a high tendency to cyclize and the temperatures are therefore kept low. This results ia a low molecular weight polymer, which is subsequently iacreased ia viscosity by sohd-state polymerisation. [Pg.272]

Phloroglucinol is Hsted in the Colourindex as Cl Developer 19. It is particularly valuable in the dyeing of acetate fiber but also has been used as a coupler for azoic colors in viscose, Odon, cotton (qv), rayon, or nylon fibers, or in union fabrics containing these fibers (157). For example, cellulose acetate fabric is treated with an aromatic amine such as (9-dianisidine or a disperse dye such as A-hydroxyphenylazo-2-naphthylamine and the amine diazotizes on the fiber the fabric is then rinsed, freed of excess nitrite, and the azo color is developed in a phloroglucinol bath at pH 5—7. Depending on the diazo precursor used, intense blue to jet-black shades can be obtained with excellent light-, bleach-, and mbfastness. [Pg.384]

The 4,4 -MDA is sold commercially with a diamine assay of 98 —99%. The major impurity is the 2,4 -MDA isomer, which can be present in amounts up to 3%. PMDA products are normally defined by hydrogen equivalent weight and viscosity. Typical products exhibit a 50 hydrogen equivalent weight and a viscosity of 80 140 mPa-s(=cP) at 70°C. PMDA products normally contain, in addition to the isomers and oligomers of MDA, small amounts of aniline, water, chlorides, and various alkylated amines. AH MDA products should be stored in sealed containers in a cool dry area. [Pg.250]

Certain ethyleneamines requite storage above ambient temperature to keep them above thein free2ing points (EDA and PIP) or to lower the viscosity (the heavy amines). As a result, the vapors "breathing" from the storage tank can contain significant concentrations of the product. Water scmbbers maybe used to capture these vapors. [Pg.46]

The initial sulfur copolymer that is formed is often high conversion and gelled. Molecular weight is reduced to the required level by cleaving some of the polysulfide Linkages, usually with tetraethylthiuram disulfide. An alkaU metal or ammonium salt (30) of the dithiocarbamate, an alkaU metal salt of mercaptobensothiasole (31), and a secondary amine (32) have all been used as catalysts. The peptization reaction results in reactive chain ends. Polymer peptized with diphenyl tetrasulfide was reported to have improved viscosity stabiUty (33). [Pg.539]

The bisphenol A-derived epoxy resins are most frequendy cured with anhydrides, aUphatic amines, or polyamides, depending on desired end properties. Some of the outstanding properties are superior electrical properties, chemical resistance, heat resistance, and adhesion. Conventional epoxy resins range from low viscosity Hquids to soHd resins. [Pg.363]

An important appHcation is for filament-wound glass-reinforced pipe used in oil fields, chemical plants, water distribution, and as electrical conduits. Low viscosity Hquid systems having good mechanical properties (elongation at break) when cured are preferred. These are usually cured with Hquid anhydride or aromatic-amine hardeners. Similar systems are used for filament-win ding pressure botdes and rocket motor casings. [Pg.371]

Compared with standard diglycidyl ether resins, the liquid cyclic aliphatic resins are paler in colour and have a much lower viscosity. Whereas in general the cyclic aliphatic resins react more slowly with amines, there is less difference with acid anhydrides. Table 26.7 provides data illustrating this point. [Pg.765]

Progressive replacement of amine hardener by a low-viscosity flexibiliser will reduce mix viscosity, increase pot life and reduce the heat distortion temperature of the cured system. Higher impaet strengths are achieved using approximately equivalent amounts of hardener and flexibiliser. [Pg.771]

Eor amine-containing polymers, DMF is often a good choice of solvent. DMF can also be a good choice for polymers of higher carboxylic acid content. However, DMF does present some experimental difficulties. It must be run at an elevated temperature, typically 60°C, because of its viscosity. Also, because most polymers have a much lower refractive index response in DMF, the signal-to-noise ratio for a polymer in this solvent is diminished versus the same ratio for common acrylates in THF. [Pg.553]

Typical BW antifoam emulsion products include SAG 10 and SAG 30 (10 and 30% milky white emulsions, each with a viscosity of 2,000 cS at 25 °C) from Union Carbide Corporation. These same products also are used for food processing (under FDA 21CFR 173.340), for petroleum processing (as amine scrubbers, gas-oil separators, etc.), and as functional chemicals (antifreezes, hydraulic fluids, cutting oils, etc.). [Pg.555]

Polybutadienes, polycaprolactones, polycarbonates, and amine-terminated polyethers (ATPEs) are shown in Scheme 4.4 as examples of other commercially available polyols. They are all specialty materials, used in situations where specific property profiles are required. For example, ATPEs are utilized in spray-applied elastomers where fast-reacting, high-molecular-weight polyamines give quick gel times and rapid viscosity buildup. Polycarbonates are used for implantation devices because polyuredtanes based on them perform best in this very demanding environment. Polycaprolactones and polybutadienes may be chosen for applications which require exceptional light stability, hydrolysis resistance, and/or low-temperature flexibility. [Pg.213]


See other pages where Viscosity amine is mentioned: [Pg.305]    [Pg.305]    [Pg.81]    [Pg.234]    [Pg.23]    [Pg.296]    [Pg.418]    [Pg.64]    [Pg.250]    [Pg.409]    [Pg.10]    [Pg.178]    [Pg.145]    [Pg.400]    [Pg.401]    [Pg.192]    [Pg.228]    [Pg.256]    [Pg.257]    [Pg.366]    [Pg.328]    [Pg.32]    [Pg.337]    [Pg.338]    [Pg.358]    [Pg.47]    [Pg.263]    [Pg.263]    [Pg.4]    [Pg.189]    [Pg.554]    [Pg.771]    [Pg.562]    [Pg.669]    [Pg.329]    [Pg.166]   
See also in sourсe #XX -- [ Pg.289 ]




SEARCH



Viscosity aminic polyols

© 2024 chempedia.info