Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscoelasticity superposition principle

The simplest theoretical model proposed to predict the strain response to a complex stress history is the Boltzmann Superposition Principle. Basically this principle proposes that for a linear viscoelastic material, the strain response to a complex loading history is simply the algebraic sum of the strains due to each step in load. Implied in this principle is the idea that the behaviour of a plastic is a function of its entire loading history. There are two situations to consider. [Pg.95]

It is apparent therefore that the Superposition Principle is a convenient method of analysing complex stress systems. However, it should not be forgotten that the principle is based on the assumption of linear viscoelasticity which is quite inapplicable at the higher stress levels and the accuracy of the predictions will reflect the accuracy with which the equation for modulus (equation (2.33)) fits the experimental creep data for the material. In Examples (2.13) and (2.14) a simple equation for modulus was selected in order to illustrate the method of solution. More accurate predictions could have been made if the modulus equation for the combined Maxwell/Kelvin model or the Standard Linear Solid had been used. [Pg.103]

Since we are interested in this chapter in analyzing the T- and P-dependences of polymer viscoelasticity, our emphasis is on dielectric relaxation results. We focus on the means to extrapolate data measured at low strain rates and ambient pressures to higher rates and pressures. The usual practice is to invoke the time-temperature superposition principle with a similar approach for extrapolation to elevated pressures [22]. The limitations of conventional t-T superpositioning will be discussed. A newly developed thermodynamic scaling procedure, based on consideration of the intermolecular repulsive potential, is presented. Applications and limitations of this scaling procedure are described. [Pg.658]

There are two superposition principles that are important in the theory of Viscoelasticity. The first of these is the Boltzmann superposition principle, which describes the response of a material to different loading histories (22). The second is the time-temperature superposition principle or WLF (Williams, Landel, and Ferry) equation, which describes the effect of temperature on the time scale of the response. [Pg.73]

There are many types of deformation and forces that can be applied to material. One of the foundations of viscoelastic theory is the Boltzmann Superposition Principle. This principle is based on the assumption that the effects of a series of applied stresses acting on a sample results in a strain which is related to the sum of the stresses. The same argument applies to the application of a strain. For example we could apply an instantaneous stress to a body and maintain that stress constant. For a viscoelastic material the strain will increase with time. The ratio of the strain to the stress defines the compliance of the body ... [Pg.120]

An important and sometimes overlooked feature of all linear viscoelastic liquids that follow a Maxwell response is that they exhibit anti-thixo-tropic behaviour. That is if a constant shear rate is applied to a material that behaves as a Maxwell model the viscosity increases with time up to a constant value. We have seen in the previous examples that as the shear rate is applied the stress progressively increases to a maximum value. The approach we should adopt is to use the Boltzmann Superposition Principle. Initially we apply a continuous shear rate until a steady state... [Pg.125]

Because of equipment limitations in measuring stress and strain in polymers, the time-temperature superposition principle is used to develop the viscoelastic response curve for real polymers. For example, the time-dependent stress relaxation modulus as a function of time and temperature for a PMMA resin is shown in... [Pg.77]

Fig. 3.14. The data is for a very broad range of times and temperatures. The superposition principle is based on the observation that time (rate of change of strain, or strain rate) is inversely proportional to the temperature effect in most polymers. That is, an equivalent viscoelastic response occurs at a high temperature and normal measurement times and at a lower temperature and longer times. The individual responses can be shifted using the WLF equation to produce a modulus-time master curve at a specified temperature, as shown in Fig. 3.15. The WLF equation is as shown by Eq. 3.31 for shifting the viscosity. The method works for semicrystalline polymers. It works for amorphous polymers at temperatures (T) greater than Tg + 100 °C. Shifting the stress relaxation modulus using the shift factor a, works in a similar manner. Fig. 3.14. The data is for a very broad range of times and temperatures. The superposition principle is based on the observation that time (rate of change of strain, or strain rate) is inversely proportional to the temperature effect in most polymers. That is, an equivalent viscoelastic response occurs at a high temperature and normal measurement times and at a lower temperature and longer times. The individual responses can be shifted using the WLF equation to produce a modulus-time master curve at a specified temperature, as shown in Fig. 3.15. The WLF equation is as shown by Eq. 3.31 for shifting the viscosity. The method works for semicrystalline polymers. It works for amorphous polymers at temperatures (T) greater than Tg + 100 °C. Shifting the stress relaxation modulus using the shift factor a, works in a similar manner.
Viscoelastic behavior is classified as linear or non-linear according to the manner by which the stress depends upon the imposed deformation history (SO). Insteady shear flows, for example, the shear rate dependence of viscosity and the normal stress functions are non-linear properties. Linear viscoelastic behavior is obtained for simple fluids if the deformation is sufficiently small for all past times (infinitesimal deformations) or if it is imposed sufficiently slowly (infinitesimal rate of deformation) (80,83). In shear flow under these circumstances, the normal stress differences are small compared to the shear stress, and the expression for the shear stress reduces to a statement of the Boltzmann superposition principle (15,81) ... [Pg.22]

A viscoelastic solid is characterized by the fact that its modulus E is a function of time. Thus, the response of the material to a loading program, s(t) or d(t) needs the application of the Boltzmann superposition principle (Sec. 11.1). In the case of programmed strain ... [Pg.347]

Apply the Boltzmann superposition principle for the case of a continuous stress application on a linear viscoelastic material to obtain the resulting strain y(t) in terms of J(t — t ) and ih/dt, the stress history. Consider the applied stress in terms of small applied At,-, as shown on the accompanying figure. [Pg.142]

The peak of the dielectric loss of this process reflects its viscoelastic nature by obeying the time-temperature superposition principle, wherein the peak is shifted to higher temperatures for shorter times (higher frequencies) and vice versa. This process has been described by the Havriliak-Negami empirical formula [106, 108]... [Pg.565]

With all these models, the simple ones as well as the spectra, it has to be supposed that stress and strain are, at any time, proportional, so that the relaxation function E(t) and the creep function D(t) are independent of the levels of deformation and stress, respectively. When this is the case, we have linear viscoelastic behaviour. Then the so-called superposition principle holds, as formulated by Boltzmann. This describes the effect of changes in external conditions of a viscoelastic system at different points in time. Such a change may be the application of a stress or also an imposed deformation. [Pg.108]

Later on we shall see that the superposition principle is is, for polymers, only seldomly obeyed linear viscoelasticity is only met at very small stresses and deformations, at loading levels occurring in practice the behaviour may strongly deviate from linearity. However, the superposition principle provides a useful first-order approximation. [Pg.109]

In an earlier section, we have shown that the viscoelastic behavior of homogeneous block copolymers can be treated by the modified Rouse-Bueche-Zimm model. In addition, the Time-Temperature Superposition Principle has also been found to be valid for these systems. However, if the block copolymer shows microphase separation, these conclusions no longer apply. The basic tenet of the Time-Temperature Superposition Principle is valid only if all of the relaxation mechanisms are affected by temperature in the same manner. Materials obeying this Principle are said to be thermorheologically simple. In other words, relaxation times at one temperature are related to the corresponding relaxation times at a reference temperature by a constant ratio (the shift factor). For... [Pg.199]

As an example of the concentration dependence of viscoelastic properties in Fig. 16.11 the shear creep compliance of poly(vinyl acetate) is plotted vs. time for solutions of poly(vinyl acetate) in diethyl phthalate with indicated volume fractions of polymer, reduced to 40 °C with the aid of the time temperature superposition principle (Oyanagi and Ferry, 1966). From this figure it becomes clear that the curves are parallel. We may conclude that the various may be shifted over the time axis to one curve, e.g. to the curve for pure polymer. In general it appears that viscoelastic properties measured at various concentrations may be reduced to one single curve at one concentration with the aid of a time-concentration superposition principle, which resembles the time-temperature superposition principle (see, e.g. Ferry, General references, 1980, Chap. 17). The Doolittle equation reads for this reduction ... [Pg.621]

We expect that the modification creates the free volume (Vf) in wood substance from the similarity of the effect of and n on viscoelasticity. The discussion for wood, however, is impossible on the basis of a concept of the free volume, although the flexibility of molecular motion for synthetic amorphous polymers is discussed. Unfortunately, we can not directly know the created free volume because the time-temperature superposition principle is not valid for wood [19]. The principle is related to WLF equation by which the free volume is calculated. The free volume, however, relates to volumetric swelling as follows. [Pg.251]

The Time-Temperature Superposition Principle. For viscoelastic materials, the time-temperature superposition principle states that time and temperature are equivalent to the extent that data at one temperature can be superimposed upon data at another temperature by shifting the curves horizontally along the log time or log frequency axis. This is illustrated in Figure 8. While the relaxation modulus is illustrated (Young s modulus determined in the relaxation mode), any modulus or compliance measure may be substituted. [Pg.11]

Important viscoelastic principles include the time-temperature superposition principle and its resultant WLF equation. These can be applied to understand the relationship between literature values of the glass transition temperature and actual needs. Thus, by using the growing amount of science now available in the field of damping, one can select that polymeric material which will damp most effectively. [Pg.22]

The inherent difficulty in the measurement of the complex dynamic moduli of viscoelastic materials is emphasized by the results of this paper. The agreement among the shifted modulus data as measured by different systems is limited by several difficulties (1) measurement inaccuracies of the instruments, (2) differences in the data reduction techniques used to apply the time-temperature superposition principle and propagation of shift curve errors and, (3) nonuniformity of the test samples. [Pg.60]

The major features of linear viscoelastic behavior that will be reviewed here are the superposition principle and time-temperature equivalence. Where they are valid, both make it possible to calculate the mechanical response of a material under a wide range of conditions from a limited store of experimental information. [Pg.410]

This differential form can be integrated to give the integral form of the model which can also be derived from the Boltzman superposition principle using the concept of fading memory of viscoelastic liquids ... [Pg.145]

The Boltzmann superposition principle applied to a viscoelastic material that has undergone a history of pressures or tensile stresses can be written as... [Pg.210]

The superposition principle leads to the following generahzed relationship between the strain tensor and the stress tensor for viscoelastic systems ... [Pg.221]

According to the Boltzmann superposition principle, the shear strain of a solid viscoelastic material under the action of a harmonic shear stress can be written as (2)... [Pg.245]

One must note that the balance equations are not dependent on either the type of material or the type of action the material undergoes. In fact, the balance equations are consequences of the laws of conservation of both linear and angular momenta and, eventually, of the first law of thermodynamics. In contrast, the constitutive equations are intrinsic to the material. As will be shown later, the incorporation of memory effects into constitutive equations either through the superposition principle of Boltzmann, in differential form, or by means of viscoelastic models based on the Kelvin-Voigt or Maxwell models, causes solution of viscoelastic problems to be more complex than the solution of problems in the purely elastic case. Nevertheless, in many situations it is possible to convert the viscoelastic problem into an elastic one through the employment of Laplace transforms. This type of strategy is accomplished by means of the correspondence principle. [Pg.697]

In linear elasticity or viscoelasticity, the superposition principle states that the resulting effects of the different causes (stress or displacements), acting separately, can be superposed to give the total values due to these combined causes. This principle is a consequence of the linearity of the equations governing the stress, strain, and displacements. [Pg.710]

Chapters 5 and 6 discuss how the mechanical characteristics of a material (solid, liquid, or viscoelastic) can be defined by comparing the mean relaxation time and the time scale of both creep and relaxation experiments, in which the transient creep compliance function and the transient relaxation modulus for viscoelastic materials can be determined. These chapters explain how the Boltzmann superposition principle can be applied to predict the evolution of either the deformation or the stress for continuous and discontinuous mechanical histories in linear viscoelasticity. Mathematical relationships between transient compliance functions and transient relaxation moduli are obtained, and interrelations between viscoelastic functions in the time and frequency domains are given. [Pg.884]

Materials can show linear and nonlinear viscoelastic behavior. If the response of the sample (e.g., shear strain rate) is proportional to the strength of the defined signal (e.g., shear stress), i.e., if the superposition principle applies, then the measurements were undertaken in the linear viscoelastic range. For example, the increase in shear stress by a factor of two will double the shear strain rate. All differential equations (for example, Eq. (13)) are linear. The constants in these equations, such as viscosity or modulus of rigidity, will not change when the experimental parameters are varied. As a consequence, the range in which the experimental variables can be modified is usually quite small. It is important that the experimenter checks that the test variables indeed lie in the linear viscoelastic region. If this is achieved, the quality control of materials on the basis of viscoelastic properties is much more reproducible than the use of simple viscosity measurements. Non-linear viscoelasticity experiments are more difficult to model and hence rarely used compared to linear viscoelasticity models. [Pg.3134]

Linear Viscoelasticity of Unfractionated Samples. The BP6L and BP6H samples were found to give reproducible data at temperatures below 120°C if first exposed to 150°C for 5 minutes. After such a heat treatment measurements were made on these samples at T = 35, 41, 50, 60, 70, 80, 90, 101, and 120°C. The empirical time-temperature superposition principle (13) was found to be valid for BP6L between 60°C and 120°C and for BP6H between 40°C and 120°C, and was used to make master curves at a reference temperature of 101°C (Figs. 4 and 5). The modulus scale... [Pg.227]

Find the relation between creep compliance J(t) and recoverable compliance /R(f) using the Boltzmann superposition principle. Dielectric spectroscopy indicates that water molecules respond to an oscillating electric field at a frequency of 17 GHz at room temperature. Is water still a Newtonian liquid at this high a frequency or is it viscoelastic If... [Pg.304]

The second important consequence of the relaxation times of all modes having the same temperature dependence is the expectation that it should -bp possible to superimpose linear viscoelastic data taken at different temperatures. This is commonly known as the time-temperature superposition principle. Stress relaxation modulus data at any given temperature Tcan be superimposed on data at a reference temperature Tq using a time scale multiplicative shift factor uj- and a much smaller modulus scale multiplicative shift factor hf. [Pg.335]

Eom et al. (2000) used a time-cure-temperature superposition principle upon isothermal dynamic data obtained at various temperatures to predict instantaneous viscoelastic properties during cure. [Pg.344]

Inherent in the mathematical treatment of linear viscoelasticity is the Boltzmann superposition principle (15), which, in simple terms, states that the deformation resulting at any time is directly proportional to the applied stress. This is illustrated in Figure 10.5. [Pg.319]


See other pages where Viscoelasticity superposition principle is mentioned: [Pg.923]    [Pg.923]    [Pg.42]    [Pg.669]    [Pg.285]    [Pg.24]    [Pg.538]    [Pg.133]    [Pg.13]    [Pg.161]    [Pg.455]    [Pg.457]    [Pg.457]    [Pg.199]    [Pg.698]    [Pg.243]   
See also in sourсe #XX -- [ Pg.410 ]

See also in sourсe #XX -- [ Pg.410 ]




SEARCH



Linear viscoelasticity Boltzmann superposition principle

Linear viscoelasticity superposition principle

Superposition principle

Superpositioning

Superpositions

Viscoelastic behaviour, linear Boltzmann superposition principle

Viscoelasticity Boltzmann superposition principle

Viscoelasticity and Superposition Principle

© 2024 chempedia.info