Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscoelastic behavior, measuring

Viscoelastic Measurement. A number of methods measure the various quantities that describe viscoelastic behavior. Some requite expensive commercial rheometers, others depend on custom-made research instmments, and a few requite only simple devices. Even quaHtative observations can be useful in the case of polymer melts, paints, and resins, where elasticity may indicate an inferior batch or unusable formulation. Eor example, the extmsion sweU of a material from a syringe can be observed with a microscope. The Weissenberg effect is seen in the separation of a cone and plate during viscosity measurements or the climbing of a resin up the stirrer shaft during polymerization or mixing. [Pg.192]

Fig. 22. Nomialized pull-off energy measured for polyethylene-polyethylene contact measured using the SFA. (a) P versus rate of crack propagation for PE-PE contact. Change in the rate of separation does not seem to affect the measured pull-off force, (b) Normalized pull-off energy, Pn as a function of contact time for PE-PE contact. At shorter contact times, P does not significantly depend on contact time. However, as the surfaces remain in contact for long times, the pull-off energy increases with time. In seinicrystalline PE, the crystalline domains act as physical crosslinks for the relatively mobile amorphous domains. These amorphous domains can interdiffuse across the interface and thereby increase the adhesion of the interface. This time dependence of the adhesion strength is different from viscoelastic behavior in the sense that it is independent of rate of crack propagation. Fig. 22. Nomialized pull-off energy measured for polyethylene-polyethylene contact measured using the SFA. (a) P versus rate of crack propagation for PE-PE contact. Change in the rate of separation does not seem to affect the measured pull-off force, (b) Normalized pull-off energy, Pn as a function of contact time for PE-PE contact. At shorter contact times, P does not significantly depend on contact time. However, as the surfaces remain in contact for long times, the pull-off energy increases with time. In seinicrystalline PE, the crystalline domains act as physical crosslinks for the relatively mobile amorphous domains. These amorphous domains can interdiffuse across the interface and thereby increase the adhesion of the interface. This time dependence of the adhesion strength is different from viscoelastic behavior in the sense that it is independent of rate of crack propagation.
Fig. 2.18. Polymeric solids are observed to respond to shock compression in a viscoelastic behavior. The figure shows a transmitted wave profile in UVIIA PMMA as measured with an imbedded VISAR mirror. Note that the early shock is followed by a rapid relaxation to a higher velocity, and a slow relaxation to higher velocities, (after Schuler and Nunziato [74S01]). Fig. 2.18. Polymeric solids are observed to respond to shock compression in a viscoelastic behavior. The figure shows a transmitted wave profile in UVIIA PMMA as measured with an imbedded VISAR mirror. Note that the early shock is followed by a rapid relaxation to a higher velocity, and a slow relaxation to higher velocities, (after Schuler and Nunziato [74S01]).
It is clear that this data treatment is strictly valid providing the tested material exhibits linear viscoelastic behavior, i.e., that the measured torque remains always proportional to the applied strain. In other words, when the applied strain is sinusoidal, so must remain the measured torque. The RPA built-in data treatment does not check this y(o )/S (o)) proportionality but a strain sweep test is the usual manner to verify the strain amplitude range for constant complex torque reading at fixed frequency (and constant temperature). [Pg.820]

The dynamic viscoelasticity of particulate gels of silicone gel and lightly doped poly-p-phenylene (PPP) particles has been studied under ac excitation [55]. The influence of the dielectric constant of the PPP particles has been investigated in detail. It is well known that the dielectric constant varies with the frequency of the applied field, the content of doping, or the measured temperature. In Fig. 11 is displayed the relationship between an increase in shear modulus induced by ac excitation of 0.4kV/mm and the dielectric constant of PPP particles, which was varied by changing the frequency of the applied field. AG increases with s2 and then reaches a constant value. Although the composite gel of PPP particles has dc conductivity, the viscoelastic behavior of the gel in an electric field is qualitatively explained by the model in Sect. 4.2.1, in which the effect of dc conductivity is neglected. [Pg.155]

The viscoelastic behavior of concentrated (20% w/w)aqueous polystryene latex dispersions (particle radius 92nm), in the presence of physically adsorbed poly(vinyl alcohol), has been investigated as a function of surface coverage by the polymer using creep measurements. From the creep curves both the instantaneous shear modulus, G0, and residual viscosity, nQ, were calculated. [Pg.411]

Rheological Properties Measurements. The viscoelastic behavior of the UHMWPE gel-like systems was studied using the Rheometric Mechanical Spectrometer (RMS 705). A cone and plate fixture (radius 1.25 cm cone angle 9.85 x 10" radian) was used for the dynamic frequency sweep, and the steady state shear rate sweep measurements. In order to minimize the error caused by gap thickness change during the temperature sweep, the parallel plates fixture (radius 1.25 cm gap 1.5 mm) was used for the dynamic temperature sweep measurements. [Pg.23]

Polymers are viscoelastic materials meaning they can act as liquids, the visco portion, and as solids, the elastic portion. Descriptions of the viscoelastic properties of materials generally falls within the area called rheology. Determination of the viscoelastic behavior of materials generally occurs through stress-strain and related measurements. Whether a material behaves as a viscous or elastic material depends on temperature, the particular polymer and its prior treatment, polymer structure, and the particular measurement or conditions applied to the material. The particular property demonstrated by a material under given conditions allows polymers to act as solid or viscous liquids, as plastics, elastomers, or fibers, etc. This chapter deals with the viscoelastic properties of polymers. [Pg.459]

As pointed out by Britton (15), the measurements are useful in design and research studies pertaining to (1) vibration analysis of structure, (2) propellant viscoelastic behavior, (3) oscillating combustion, (4) internal attenuation of shock waves, and (5) fatigue life. [Pg.219]

Filler-filler interaction (Payne effect) - The introduction of reinforcing fillers into rubbery matrices strongly modifies the viscoelastic behavior of the materials. In dynamic mechanical measurements, with increasing strain amplitude, reinforced samples display a decrease of the storage shear modulus G. This phenomenon is commonly known as the Payne effect and is due to progressive destruction of the filler-filler interaction [46, 47]. The AG values calculated from the difference in the G values measured at 0.56% strain and at 100% strain in the unvulcanized state are used to quantify the Payne effect. [Pg.198]

The mean times t and tw will be called the number-average and weight-average relaxation times of the terminal region, and tw/t can be regarded as a measure of the breadth of the terminal relaxation time distribution. It should be emphasized that these relationships are merely consequences of linear viscoelastic behavior and depend in no way on assumptions about molecular behavior. The observed relationships between properties such as rj0, J°, and G and molecular parameters provides the primary evidence for judging molecular theories of the long relaxation times in concentrated systems. [Pg.25]

Real world materials are not simple liquids or solids but are complex systems that can exhibit both liquid-like and solid-like behavior. This mixed response is known as viscoelasticity. Often the apparent dominance of elasticity or viscosity in a sample will be affected by the temperature or the time period of testing. Flow tests can derive viscosity values for complex fluids, but they shed light upon an elastic response only if a measure is made of normal stresses generated during shear. Creep tests can derive the contribution of elasticity in a sample response, and such tests are used in conjunction with dynamic testing to quantity viscoelastic behavior. [Pg.1195]

Integral viscoelastic models. Integral models with a memory function have been widely used to describe the viscoelastic behavior of polymers and to interpret their rheological measurements [37, 41, 43], In general one can write the single integral model as... [Pg.80]

Mild acid modification of oat starch had a great affect on the viscoelastic behavior of pastes during cooling. Acid-modified oat starch underwent one transition in viscoelastic behavior below 40°C, G increased and 6 decreased, due to gelation of amylose. The transition below 90°C typical for native oat starch was not observed after acid modification. This finding is in agreement with that of Paton,43 who found that treatment with acid almost eliminated the exceptionally high viscosity measured at 80°C for native oat starch. [Pg.598]

Frequently, a characteristic relaxation time, k, is used to describe viscoelastic behavior. It is a measure for the time needed to transform the reversibly-elastically stored energy into friction heat ... [Pg.71]

The four variables in dynamic oscillatory tests are strain amplitude (or stress amplitude in the case of controlled stress dynamic rheometers), frequency, temperature and time (Gunasekaran and Ak, 2002). Dynamic oscillatory tests can thus take the form of a strain (or stress) amplitude sweep (frequency and temperature held constant), a frequency sweep (strain or stress amplitude and temperature held constant), a temperature sweep (strain or stress amplitude and frequency held constant), or a time sweep (strain or stress amplitude, temperature and frequency held constant). A strain or stress amplitude sweep is normally carried out first to determine the limit of linear viscoelastic behavior. In processing data from both static and dynamic tests it is always necessary to check that measurements were made in the linear region. This is done by calculating viscoelastic properties from the experimental data and determining whether or not they are independent of the magnitude of applied stresses and strains. [Pg.760]

Measurement of linear viscolelastic properties is a useful way of gaining information about a food s micro structure and how this influences the food s rheological character (Narine and Marangoni, 1999 Gunsekaran and Ak, 2002). However, many processing operations, and mastication, involve large, rapid deformations during which viscoelastic behavior is nonlinear. [Pg.760]


See other pages where Viscoelastic behavior, measuring is mentioned: [Pg.2]    [Pg.2]    [Pg.179]    [Pg.151]    [Pg.172]    [Pg.192]    [Pg.199]    [Pg.45]    [Pg.44]    [Pg.299]    [Pg.610]    [Pg.825]    [Pg.173]    [Pg.26]    [Pg.470]    [Pg.172]    [Pg.192]    [Pg.128]    [Pg.273]    [Pg.193]    [Pg.151]    [Pg.1204]    [Pg.182]    [Pg.341]    [Pg.515]    [Pg.523]    [Pg.8]    [Pg.287]    [Pg.51]    [Pg.90]    [Pg.300]    [Pg.107]    [Pg.155]   


SEARCH



Behavioral Measures

Dynamic behavior viscoelasticity measurements

Dynamic mechanical measurements viscoelastic behavior

Elastomers, viscoelastic behavior measurements

Measuring behavior

Viscoelastic behavior

Viscoelastic behavior measurements

Viscoelastic behavior measurements

Viscoelastic behavior viscoelasticity

Viscoelastic measurements

Viscoelasticity behavior

© 2024 chempedia.info