Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High Viscosity Measurement

Mild acid modification of oat starch had a great affect on the viscoelastic behavior of pastes during cooling. Acid-modified oat starch underwent one transition in viscoelastic behavior below 40°C, G increased and 6 decreased, due to gelation of amylose. The transition below 90°C typical for native oat starch was not observed after acid modification. This finding is in agreement with that of Paton,43 who found that treatment with acid almost eliminated the exceptionally high viscosity measured at 80°C for native oat starch. [Pg.598]

Once the value of the constant and the a value in Eq. (2.36) have been evaluated for a particular system, viscosity measurements constitute a relatively easy method for determining the molecular weight of a polymer. Criticize or defend the following proposition Since viscosity is so highly dependent on molecular weight for M > M, a 10% error in 17 will result in a 34% error in M above M, but only a 10% error in M below M, . [Pg.131]

The viscosity of the spray oil, as measured by the Saybolt test, also determines its safety on plants. Other properties being equal, oils of low viscosity ate safer to use on foHage than those of high viscosity. For dormant sprays on deciduous trees, oils with viscosities between 100 and 200 Saybolt universal seconds (SUs) at 37.8°C are considered satisfactory. A lower range is often used in colder and a higher range in warmer areas. [Pg.297]

Viscosity (Viscosity-Index) Improvers. Oils of high viscosity index (VI) can be attained by adding a few percent of ahnear polymer similar to those used for pour-point depressants. The most common are polyisobutylenes, polymethacrylates, and polyalkylstyrenes they are used in the molecular weight range of about 10,000 to 100,000 (18). A convenient measure for the viscosity-increasing efficiency of various polymers is the intrinsic viscosity Tj, as given by the function... [Pg.242]

Resoles. Like the novolak processes, a typical resole process consists of reaction, dehydration, and finishing. Phenol and formaldehyde solution are added all at once to the reactor at a molar ratio of formaldehyde to phenol of 1.2—3.0 1. Catalyst is added and the pH is checked and adjusted if necessary. The catalyst concentration can range from 1—5% for NaOH, 3—6% for Ba(OH)2, and 6—12% for hexa. A reaction temperature of 80—95°C is used with vacuum-reflux control. The high concentration of water and lower enthalpy compared to novolaks allows better exotherm control. In the reaction phase, the temperature is held at 80—90°C and vacuum-refluxing lasts from 1—3 h as determined in the development phase. SoHd resins and certain hquid resins are dehydrated as quickly as possible to prevent overreacting or gelation. The end point is found by manual determination of a specific hot-plate gel time, which decreases as the polymerization advances. Automation includes on-line viscosity measurement, gc, and gpc. [Pg.298]

PPS is well-recognized for its exceptional chemical resistance. There are no known solvents for PPS below 200°C. A comprehensive survey of solvents for PPS has been published (115). Extreme conditions are required to dissolve PPS in both common and exotic solvents. Solution viscosity measurements are made difficult by this high temperature requirement. Inherent viscosity measurements are performed in 1-chloronaphthalene at 206°C at a concentration of 0.4 g of polymer per deciliter of solution. The inherent viscosity of PPS solutions shows a usefiil response to increa sing molecular weight. Table 2 shows a correlation of inherent viscosity measurements with melt flow measurements. [Pg.446]

Effect of Temperature. In addition to being often dependent on parameters such as shear stress, shear rate, and time, viscosity is highly sensitive to changes in temperature. Most materials decrease in viscosity as temperature increases. The dependence is logarithmic and can be substantial, up to 10% change/°C. This has important implications for processing and handling of materials and for viscosity measurement. [Pg.170]

Rotational viscometers often were not considered for highly accurate measurements because of problems with gap and end effects. However, corrections can be made, and very accurate measurements are possible. Operating under steady-state conditions, they can closely approximate industrial process conditions such as stirring, dispersing, pumping, and metering. They are widely used for routine evaluations and quahty control measurements. The commercial instmments are effective over a wide range of viscosities and shear rates (Table 7). [Pg.184]

In the Mooney shearing disk viscometer, a serrated disk is rotated ia a sample fixed ia a pressuri2ed cavity. The instmment was developed for mbber and other elastomeric materials and is a standard quaUty control iastmment ia the mbber iadustry (ASTM D1646). It is used to measure high viscosities givea ia arbitrary Mooaey units, but usually ca 7.5 x 10 mPa-s atlow(ca 1.5 ) shear rates. [Pg.189]

Viscosity is one of the most important properties of hydraulic fluids. It is a measure of a fluid s resistance to flow. A liquid such as gasoline which flows easily has a low viscosity, and a liquid such as tar which flows slowly has a high viscosity. The viscosity of a liquid is affected by changes in temperature and pressure. As the temperature of liquid increases, its viscosity decreases. That is, a liquid flows more easily when it is hot than when it is cold. The viscosity of a liquid will increase as the pressure on the liquid increases. [Pg.598]

How does yield stress depend on a filler concentration It is shown in Fig. 9 that appreciable values of Y appear beginning from a certain critical concentration cp and then increase rather sharply. Though the existence of cp seems to be quite obvious from the view point of the possibility of contacts of the filler, i.e. the beginning of a netformation in the system, practically the problem turns on the accuracy of measuring small stresses in high-viscosity media. It is quite possible to represent the Y(cp) dependence by exponential law, as follows from Fig. 10, for example, leaving aside the problem of the behavior of this function at very low concentrations of the filler, all the more the small values of are measured with a significant part of uncertainty. [Pg.80]

The melt index (MI) or melt flow index (MFT) is an inverse measure of viscosity. High MI implies low viscosity and low MI means high viscosity. Plastics are shear thinning, which means that their resistance to flow decreases as the shear rate increases. This is due to molecular alignments in the direction of flow and disentanglements. [Pg.449]

A shearing action grows between the compound and the rotor, and the resulting torque is measured in arbitrary units called Mooney units, which directly relate to torque. Normally, a preheat period is given to the elastomer following which the disk starts to rotate. An initial high viscosity is recorded which decreases to a minimum value. If the viscosity is more, then the Mooney unit (number) is more and viceversa. [Pg.778]

Rotating cylinder viscometers consist of two concentric cylinders, corresponding to the bob and the crucible, one cylinder of which is rotated at a constant speed. The viscosity is determined from measurement of the torque generated. A schematic drawing is shown in Fig. 25. This method is most popular for measuring viscosity at high temperatures and is suitable for melts with high viscosity. The viscosity is calculated from... [Pg.170]

Mills has concluded in his review article on molten slags that (1) most viscosity measurements were subject to experimental imcertainties of 25% (2) in some cases experimental uncertainties could be > 50% and (3) experimental uncertainties as low as 10% could be achieved by careful calibration of viscometers with high and low temperature reference materials. [Pg.177]


See other pages where High Viscosity Measurement is mentioned: [Pg.219]    [Pg.262]    [Pg.263]    [Pg.265]    [Pg.24]    [Pg.23]    [Pg.121]    [Pg.219]    [Pg.262]    [Pg.263]    [Pg.265]    [Pg.24]    [Pg.23]    [Pg.121]    [Pg.421]    [Pg.36]    [Pg.58]    [Pg.221]    [Pg.548]    [Pg.180]    [Pg.181]    [Pg.190]    [Pg.203]    [Pg.272]    [Pg.303]    [Pg.2539]    [Pg.906]    [Pg.719]    [Pg.646]    [Pg.87]    [Pg.499]    [Pg.590]    [Pg.758]    [Pg.783]    [Pg.32]    [Pg.44]    [Pg.226]    [Pg.371]    [Pg.772]    [Pg.984]    [Pg.3]    [Pg.69]   


SEARCH



High viscosity

Viscosity measurement

© 2024 chempedia.info