Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Variation Technology

Somaclonal Variation and Secondary Product Synthesis. The induction and recovery of genetic variants by somaclonal variation technology can have a profound impact on the economic feasibility of secondary metabolite production. While most of the discussion up to this point has focused on cell culture production of secondary compounds, there are clearly a number of instances where whole plant production is both more efficient and economically prudent. This is especially true for those compounds... [Pg.350]

Remote Field Eddy Current (RFEC) technology is a variation of the conventional eddy-current method, developed for detecting flaws at any point in the walls of (particularly) ferromagnetic (Fe) tubes and pipes from the inside diameter. [Pg.319]

Because variations in accurate isotope ratio measurements typically concern only a few parts per 1000 by mass and there are no universal absolute ratios, it is necessary to define some standards. For this purpose, samples of standard substances are produced and made available at two major centers IAEA (International Atomic Energy Authority, U.K.) and NIST (National Institute for Standards and Technology, U.S.). Standards from other sources are also available. These primary standards can be used as such, or alternative standards can be employed if the primary ones are not available. However, any alternative standards need to be related accurately to the primary ones (see formulae below). For example, the material PDB (PeeDee belemnite), used particularly as a standard for the ratio of isotopes, is no longer readily available, and a new standard, VPDB,... [Pg.354]

There are many variations of the basic process and the patent Hterature is extensive. Several key patents describe the technology (16). The process steps are oxidation of cumene to a concentrated hydroperoxide, cleavage of the hydroperoxide, neutralization of the cleaved products, and distillation to recover acetone. [Pg.95]

Mitsui Toatsu Chemical, Inc. disclosed a similar process usiag Raney copper (74) shortiy after the discovery at Dow, and BASF came out with a variation of the copper catalyst ia 1974 (75). Siace 1971 several hundred patents have shown modifications and improvements to this technology, both homogeneous and heterogeneous, and reviews of these processes have been pubHshed (76). Nalco Chemical Company has patented a process based essentially on Raney copper catalyst (77) ia both slurry and fixed-bed reactors and produces acrylamide monomer mainly for internal uses. Other producers ia Europe, besides Dow and American Cyanamid, iaclude AUied CoUoids and Stockhausen, who are beheved to use processes similar to the Raney copper technology of Mitsui Toatsu, and all have captive uses. Acrylamide is also produced ia large quantities ia Japan. Mitsui Toatsu and Mitsubishi are the largest producers, and both are beheved to use Raney copper catalysts ia a fixed bed reactor and to sell iato the merchant market. [Pg.135]

Although many variations of the cyclohexane oxidation step have been developed or evaluated, technology for conversion of the intermediate ketone—alcohol mixture to adipic acid is fundamentally the same as originally developed by Du Pont in the early 1940s (98,99). This step is accomplished by oxidation with 40—60% nitric acid in the presence of copper and vanadium catalysts. The reaction proceeds at high rate, and is quite exothermic. Yield of adipic acid is 92—96%, the major by-products being the shorter chain dicarboxytic acids, glutaric and succinic acids,and CO2. Nitric acid is reduced to a combination of NO2, NO, N2O, and N2. Since essentially all commercial adipic acid production arises from nitric acid oxidation, the trace impurities patterns ate similar in the products of most manufacturers. [Pg.242]

The choice of technology, the associated capital, and operating costs for a chlor—alkaU plant are strongly dependent on local factors. Especially important are local energy and transportation costs, as are environmental constraints. The primary difference ia operating costs between diaphragm, mercury, and membrane cell plants results from variations ia electricity requirements for the three processes (Table 25) so that local energy and steam costs are most important. [Pg.519]

Sasol produces synthetic fuels and chemicals from coal-derived synthesis gas. Two significant variations of this technology have been commercialized, and new process variations are continually under development. Sasol One used both the fixed-bed (Arge) process, operated at about 240°C, as weU as a circulating fluidized-bed (Synthol) system operating at 340°C. Each ET reactor type has a characteristic product distribution that includes coproducts isolated for use in the chemical industry. Paraffin wax is one of the principal coproducts of the low temperature Arge process. Alcohols, ketones, and lower paraffins are among the valuable coproducts obtained from the Synthol process. [Pg.164]

Estimates of the amount of natural gas available are made within the context of definitions and are subject to revision as definitions change, as additional information becomes available, as resources are consumed, or as undedyiag assumptions are altered. These definitions iaclude proved reserves where the resource is expected to be recoverable and marketable usiag known technology and prices probable reserves where a resource has been identified but not completely characterized and possible or potential gas where estimates are based on the available geological iaformation, historical trends, and previous successes. There are variations ia these definitions throughout the world. [Pg.168]

A variation of the Pd/Cu Wacker-Hoechst process, termed OK Technology, has been proposed by Catalytica Associates (40—46). This process avoids the use of chlorides and uses a Pd/Cu catalyst system which incorporates a polyoxoanion and a nitrile ligand. [Pg.489]

There ate three basic technology options for making solar cells with do2ens of variations on each. These approaches ate conveniently grouped as follows thick (- 300 fiTo) crystalline materials, concentrator cells, and thin (- 1 fiva) semiconductor films. [Pg.470]

Herm/es/Djnamit JS obe/Process. On a worldwide basis, the Hercules Inc./Dynamit Nobel AG process is the dorninant technology for the production of dimethyl terephthalate the chemistry was patented in the 1950s (67—69). Modifications in commercial practice have occurred over the years, with several variations being practiced commercially (70—72). The reaction to dimethyl terephthalate involves four steps, which alternate between liquid-phase oxidation and liquid-phase esterification. Two reactors are used. Eirst, -xylene is oxidized with air to -toluic acid in the oxidation reactor, and the contents are then sent to the second reactor for esterification with methanol to methyl -toluate. The toluate is isolated by distillation and returned to the first reactor where it is further oxidized to monomethyl terephthalate, which is then esterified in the second reactor to dimethyl terephthalate. [Pg.488]


See other pages where Variation Technology is mentioned: [Pg.347]    [Pg.353]    [Pg.360]    [Pg.249]    [Pg.22]    [Pg.347]    [Pg.353]    [Pg.360]    [Pg.249]    [Pg.22]    [Pg.249]    [Pg.290]    [Pg.323]    [Pg.216]    [Pg.255]    [Pg.417]    [Pg.2]    [Pg.45]    [Pg.85]    [Pg.163]    [Pg.28]    [Pg.108]    [Pg.194]    [Pg.514]    [Pg.527]    [Pg.107]    [Pg.256]    [Pg.478]    [Pg.52]    [Pg.124]    [Pg.45]    [Pg.202]    [Pg.288]    [Pg.47]    [Pg.238]    [Pg.424]    [Pg.334]    [Pg.473]    [Pg.3]    [Pg.343]    [Pg.499]    [Pg.40]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



© 2024 chempedia.info