Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor Support

The alkyl derivatives of thiazoles can be catalytically oxidized in the vapor phase at 250 to 400°C to afford the corresponding formyl derivatives (21). Molybdenum oxide, V2O5, and tin vanadate are used as catalysts either alone or with a support. The resulting carbonyl compounds can be selectively oxidized to the acids. [Pg.521]

Alkylthiazoles can be oxidized to nitriles in the presence of ammonia and a catalyst. For example, 4-cyanothiazole was prepared from 4-methylthiazole by a one-step vapor-phase process (94) involving reaction with a mixture of air, oxygen, and ammonia at 380 to 460°C. The catalyst was M0O3 and V Oj or M0O3, VjOj, and CoO on an alumina support. [Pg.531]

When the pyrolysis gases are quenched with a molar excess of iodine vapor, a yield of greater than 50% -xylylene diiodide is recovered. The observation of this effect offered the first direct chemical support for the idea that DPX pyrolysis results in PX (1) (3). [Pg.428]

During the vapor deposition process, the polymer chain ends remain truly aUve, ceasing to grow only when they are so far from the growth interface that fresh monomer can no longer reach them. No specific termination chemistry is needed, although subsequent to the deposition, reaction with atmospheric oxygen, as well as other chemical conversions that alter the nature of the free-radical chain ends, is clearly supported experimentally. [Pg.433]

Reduction. Acetaldehyde is readily reduced to ethanol (qv). Suitable catalysts for vapor-phase hydrogenation of acetaldehyde are supported nickel (42) and copper oxide (43). The kinetics of the hydrogenation of acetaldehyde over a commercial nickel catalyst have been studied (44). [Pg.50]

Liquid- and vapor-phase processes have been described the latter appear to be advantageous. Supported cadmium, zinc, or mercury salts are used as catalysts. In 1963 it was estimated that 85% of U.S. vinyl acetate capacity was based on acetylene, but it has been completely replaced since about 1982 by newer technology using oxidative addition of acetic acid to ethylene (2) (see Vinyl polymers). In western Europe production of vinyl acetate from acetylene stiU remains a significant commercial route. [Pg.102]

Vapor-phase oxidation over a promoted vanadium pentoxide catalyst gives a 90% yield of maleic anhydride [108-31-6] (139). Liquid-phase oxidation with a supported palladium catalyst gives 55% of succinic acid [110-15-6] (140). [Pg.108]

Ma.nufa.cture. Butyrolactone is manufactured by dehydrogenation of butanediol. The butyrolactone plant and process in Germany, as described after World War II (179), approximates the processes presendy used. The dehydrogenation was carried out with preheated butanediol vapor in a hydrogen carrier over a supported copper catalyst at 230—250°C. The yield of butyrolactone after purification by distillation was about 90%. [Pg.111]

Heterogeneous vapor-phase fluorination of a chlorocarbon or chlorohydrocarbon with HP over a supported metal catalyst is an alternative to the hquid phase process. Salts of chromium, nickel, cobalt or iron on an A1P. support are considered viable catalysts in pellet or fluidized powder form. This process can be used to manufacture CPC-11 and CPC-12, but is hampered by the formation of over-fluorinated by-products with Httle to no commercial value. The most effective appHcation for vapor-phase fluorination is where all the halogens are to be replaced by fluorine, as in manufacture of 3,3,3-trifluoropropene [677-21 ] (14) for use in polyfluorosiHcones. [Pg.268]

The high fluorine content contributes to resistance to attack by essentially all chemicals and oxidizing agents however, PCTFE does swell slightly ia halogenated compounds, ethers, esters, and selected aromatic solvents. Specific solvents should be tested. PCTFE has the lowest water-vapor transmission rate of any plastic (14,15), is impermeable to gases (see also Barrierpolymers), and does not carbonize or support combustion. [Pg.393]

Foams that ate relatively stable on experimentally accessible time scales can be considered a form of matter but defy classification as either soHd, Hquid, or vapor. They are sol id-1 ike in being able to support shear elastically they are Hquid-like in being able to flow and deform into arbitrary shapes and they are vapor-like in being highly compressible. The theology of foams is thus both complex and unique, and makes possible a variety of important appHcations. Many features of foam theology can be understood in terms of its microscopic stmcture and its response to macroscopically imposed forces. [Pg.426]

Mote stable catalysts ate obtained by using fluorinated graphite or fluorinated alumina as backbones, and Lewis acid halides, such as SbF, TaF, and NbF, which have a relatively low vapor pressure. These Lewis acids ate attached to the fluorinated soHd supports through fluorine bridging. They show high reactivity in Friedel-Crafts type reactions including the isomerization of straight-chain alkanes such as / -hexane. [Pg.565]

An electrochemical vapor deposition (EVD) technique has been developed that produces thin layers of refractory oxides that are suitable for the electrolyte and cell interconnection in SOFCs (9). In this technique, the appropriate metal chloride (MeCl ) vapor is introduced on one side of a porous support tube, and H2/H2O gas is introduced on the other side. The gas environments on both sides of the support tube act to form two galvanic couples, ie. [Pg.581]

Undesirable combustible gases and vapors can be destroyed by heating to the autoignition temperature in the presence of sufficient oxygen to ensure complete oxidation to CO2 and H2O. Gas incinerators are appHed to streams that are high energy, eg, pentane, or are too dilute to support combustion by themselves. The gas composition is limited typicaUy to 25% or less of the lower explosive limit. Gases that are sufficiendy concentrated to support... [Pg.58]

Most solution-cast composite membranes are prepared by a technique pioneered at UOP (35). In this technique, a polymer solution is cast directly onto the microporous support film. The support film must be clean, defect-free, and very finely microporous, to prevent penetration of the coating solution into the pores. If these conditions are met, the support can be coated with a Hquid layer 50—100 p.m thick, which after evaporation leaves a thin permselective film, 0.5—2 pm thick. This technique was used to form the Monsanto Prism gas separation membranes (6) and at Membrane Technology and Research to form pervaporation and organic vapor—air separation membranes (36,37) (Fig. 16). [Pg.68]

Ethjlben ne Synthesis. The synthesis of ethylbenzene for styrene production is another process in which ZSM-5 catalysts are employed. Although some ethylbenzene is obtained direcdy from petroleum, about 90% is synthetic. In earlier processes, benzene was alkylated with high purity ethylene in liquid-phase slurry reactors with promoted AlCl catalysts or the vapor-phase reaction of benzene with a dilute ethylene-containing feedstock with a BF catalyst supported on alumina. Both of these catalysts are corrosive and their handling presents problems. [Pg.459]

The anhydride of 1,8-naphthalenedicarboxyHc acid is obtained in ca 95—116 wt % yield by the vapor-phase air-oxidation of acenaphthene at ca 330—450°C, using unsupported or supported vanadium oxide catalysts, with or without modifiers (96). [Pg.503]

Fixed-Bed Vapor-Phase Oxidation of Naphthalene. A sihca gel or sihcon carbide support is used for catalyst involved in the oxidation of naphthalene. The typical naphthalene oxidation catalyst is a mixture of vanadium oxide and alkali metal sulfate on the siUca support. Some changes, such as the introduction of feed vaporizers, are needed to handle a naphthalene feed (14), but otherwise the equipment is the same. [Pg.483]


See other pages where Vapor Support is mentioned: [Pg.813]    [Pg.138]    [Pg.113]    [Pg.477]    [Pg.813]    [Pg.138]    [Pg.113]    [Pg.477]    [Pg.336]    [Pg.449]    [Pg.99]    [Pg.327]    [Pg.105]    [Pg.114]    [Pg.4]    [Pg.26]    [Pg.208]    [Pg.68]    [Pg.182]    [Pg.442]    [Pg.513]    [Pg.342]    [Pg.407]    [Pg.455]    [Pg.400]    [Pg.389]    [Pg.398]    [Pg.482]    [Pg.483]    [Pg.500]    [Pg.55]    [Pg.78]    [Pg.78]    [Pg.78]    [Pg.208]    [Pg.208]    [Pg.231]   


SEARCH



Exploiting Surface Chemistry to Prepare Metal-Supported Catalysts by Organometallic Chemical Vapor Deposition

Packing vapor injection support

Support, packing vapor distributing

Supported metals vapor phase deposition

Vapor-phase chromatography support

© 2024 chempedia.info