Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vacuum adequate

The electron sources used in most sems are thermionic sources in which electrons are emitted from very hot filaments made of either tungsten (W) or lanthanum boride (LaB ). W sources are typically heated to ca 2500—3000 K in order to achieve an adequate electron brightness. LaB sources require lower temperatures to achieve the same brightness, although they need a better vacuum than W sources. Once created, these primary electrons are accelerated to some desired energy with an energy spread (which ultimately determines lateral resolution) on the order of ca 1.5 eV. [Pg.271]

Safe practices employed for handling PTEE and EEP resins are adequate for Teflon PEA (37) adequate ventilation is required for processing above 330—355°C. In rotoprocessing, a vacuum (250—750 Pa or 1.8—5.6 mm Hg) in the oven ensures exhaust to the outside (36). Removal of end caps or opening of sealed parts in a weU-ventilated area ensures ventilation of decomposition fumes. During rotoprocessing, molds should be vented. [Pg.377]

In general, once the curtain of filaments has been produced, it is necessary to attenuate the filaments in order to provide strength and resistance to deformation. The most commonly practiced approach is to utilize a single slot, which is at least the width of the curtain, at a point below the spinning plate and above the laydown screen. There are two practical approaches taken. The first utilizes the injection of low pressure air at a point above the slot so that the fibers attain sufficient acceleration in the slot to provide adequate draw (22) (Fig. 7). The second utilizes a low pressure vacuum below a venturi to provide the pressure differential requited for sufficient acceleration and resulting attenuation (30). [Pg.167]

A hst of polyol producers is shown in Table 6. Each producer has a varied line of PPO and EOPO copolymers for polyurethane use. Polyols are usually produced in a semibatch mode in stainless steel autoclaves using basic catalysis. Autoclaves in use range from one gallon (3.785 L) size in research faciUties to 20,000 gallon (75.7 m ) commercial vessels. In semibatch operation, starter and catalyst are charged to the reactor and the water formed is removed under vacuum. Sometimes an intermediate is made and stored because a 30—100 dilution of starter with PO would require an extraordinary reactor to provide adequate stirring. PO and/or EO are added continuously until the desired OH No. is reached the reaction is stopped and the catalyst is removed. A uniform addition rate and temperature profile is required to keep unsaturation the same from batch to batch. The KOH catalyst can be removed by absorbent treatment (140), extraction into water (141), neutralization and/or crystallization of the salt (142—147), and ion exchange (148—150). [Pg.353]

Other factors that favor the choice of the steam ejector are the presence of process materials that can form soflds or require high alloy materials of constmction. Factors that favor the vacuum pump are credits for pollution abatement and high cost steam. The mechanical systems require more maintenance and some form of backup vacuum system, but these can be designed with adequate reflabiUty. [Pg.91]

The radioactive isotopes available for use as precursors for radioactive tracer manufacturing include barium [ C]-carbonate [1882-53-7], tritium gas, p2p] phosphoric acid or pP]-phosphoric acid [15364-02-0], p S]-sulfuric acid [13770-01 -9], and sodium [ I]-iodide [24359-64-6]. It is from these chemical forms that the corresponding radioactive tracer chemicals are synthesized. [ C]-Carbon dioxide, [ C]-benzene, and [ C]-methyl iodide require vacuum-line handling in weU-ventilated fume hoods. Tritium gas, pH]-methyl iodide, sodium borotritide, and [ I]-iodine, which are the most difficult forms of these isotopes to contain, must be handled in specialized closed systems. Sodium p S]-sulfate and sodium [ I]-iodide must be handled similarly in closed systems to avoid the Uberation of volatile p S]-sulfur oxides and [ I]-iodine. Adequate shielding must be provided when handling P P]-phosphoric acid to minimize exposure to external radiation. [Pg.437]

Vacuum Processes. More complete control over ladle treatment is achieved by the abiHty to seal a vessel weU enough so that a good vacuum can exist over the steel. Although the expense can be justified for steels with the most difficult property requirements, for many purposes less elaborate treatments are adequate. Many possible configurations exist (21). [Pg.380]

One concern in conventional processing is the achievement of uniform reagent appUcation and uniform cross-linking (18). An area in which adequate treatment of aU fibers is necessary is in flame-retardant finishing. One means of obtaining thorough treatment has been the use of vacuum impregnation, in which the fabric is first passed over a vacuum slot to remove air from the fabric interstices, foUowed by exposure to the phosphoms flame-retardant solution in the precondensate ammonia system (19). [Pg.442]

Units and Concentration. In the gaseous as well as the condensed phases, molecular concentration by molecular species is of prime importance. By convention, total pressure in a MaxweUian gas is used as though it indicates the quaUty of the vacuum and as though MaxweUian gases were the rule rather than the exception (12). In general, in dynamic systems, gas pressure (or its partial pressure components) is neither isotropic nor an adequate indicator of molecular significance. [Pg.366]

Special low fusing porcelain veneers are appHed to pure (unalloyed) titanium dental castings. It is important that firing be done either in a vacuum or inert atmosphere to protect the metal surface from excessive oxidation. The strength of the metal-ceramic bond is apparently adequate although the bonding is thought to involve primarily a mechanical rather than a chemical component. [Pg.486]

Since (c) is larger than (a) in the previous step, too thick a cake will be formed and it will not wash or dry adequately unless the effective submergence is artificially restricted to yield the design cake thickness. This may be accomplished by proper bridge-block adjustment or by vacuum regulation within the form zone of the filter valve. [Pg.1704]

Failure of compo- Ensure all system components, including flexible nents in connectors are rated for maximum feasible subatmospheric vacuum conditions pressure convey-, Ensure adequate pressure control system and ing operations. back-up (e.g., vacuum relief devices) API 2000 CCPS G-3 CCPS G-11 CCPS G-22 CCPS G-29 CCPS G-3 9... [Pg.96]

Methods for removing water from solids depends on the thermal stability of the solids or the time available. The safest way is to dry in a vacuum desiccator over concentrated sulfuric acid, phosphorus pentoxide, silica gel, calcium chloride, or some other desiccant. Where substances are stable in air and melt above 100°, drying in an air oven may be adequate. In other cases, use of an Abderhalden pistol may be satisfactory. [Pg.26]

Draper and Pollard [Science 109 448 1949] added 12% water, 0.1% aluminium (can also use zinc), and 0.05% NaHC03 to phenol, and distd at atmospheric pressure until the azeotrope was removed. The phenol was then distd at 25mm. Phenol has also been dried by distn from the benzene soln to remove the water- benzene azeotrope and the excess benzene, followed by distn of the phenol at reduced pressure under nitrogen. Processes such as this are probably adequate for analytical grade phenol which has as its main impurity water. Phenol has also been crystd from pet ether/ benzene or pet ether (b 40-60°). Purified material is stored in a vacuum desiccator over P2O5 or CaS04. [Pg.325]

Concerning condensing turbines, be sure to obtain an adequately sized vacuum breaker for the condenser. There are no words to describe the agony of watching a turbine or the driven compressor tear itself up. [Pg.291]

To obtain a low flash zone pressure, the number of plates in the upper section of the vacuum pipe still is reduced to the minimum necessary to provide adequate heat transfer for condensing the distillate with the pumparound streams. A section of plates is included just above the flash zone. Here the vapors rising from the flash zone are contacted with reflux from the product drawoff plate. This part of the tower, called the wash section, serves to remove droplets of pitch entrained in the flash zone and also provides a moderate amount of fractionation. The flash zone operates at an absolute pressure of 60-90 mm Hg. [Pg.79]

As a general rule, vacuum relief devices are permitted on offsite storage vessels handling clean finished products, since there is essentially no possibility of an internal ignition source. However, vacuum relief devices which permit breaking of a vacuum with inerts or flammable vapors are not permitted on process equipment, since they are not judged to be sufficiently rehable to provide adequate protection under all circumstances. Vacuum devices which permit air to enter may be considered, however, in cases where the equipment does not or cannot contain flammables e.g., some steam systems. [Pg.149]

There is an adequately sized atmospheric vacuum relief device to prevent vacuum. [Pg.150]

The metal itself, having an appreciable vapour pressure, is also toxic, and produces headaches, tremors, inflammation of the bladder and loss of memory. The best documented case is that of Alfred Stock (p. 151) whose constant use of mercury in the vacuum lines employed in his studies of boron and silicon hydrides, caused him to suffer for many years. The cause was eventually recognized and it is largely due to Stock s publication in 1926 of details of his experiences that the need for care and adequate ventilation is now fully appreciated. [Pg.1225]


See other pages where Vacuum adequate is mentioned: [Pg.77]    [Pg.254]    [Pg.270]    [Pg.270]    [Pg.270]    [Pg.432]    [Pg.281]    [Pg.400]    [Pg.400]    [Pg.441]    [Pg.138]    [Pg.239]    [Pg.306]    [Pg.361]    [Pg.26]    [Pg.380]    [Pg.496]    [Pg.521]    [Pg.365]    [Pg.83]    [Pg.215]    [Pg.325]    [Pg.205]    [Pg.11]    [Pg.164]    [Pg.241]    [Pg.772]    [Pg.224]    [Pg.227]    [Pg.218]    [Pg.62]    [Pg.428]   
See also in sourсe #XX -- [ Pg.460 , Pg.461 , Pg.462 , Pg.463 ]




SEARCH



© 2024 chempedia.info