Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uranium uranyl

Uranium dioxide occurs in mineral uraninite. Purified oxide may be obtained from uraninite after purification. The commercial material, however, also is recovered from other uranium sources. Uranium dioxide is obtained as an intermediate during production of uranium metal (See Uranium). Uranyl nitrate, U02(N03)2, obtained from digesting the mineral uraninite or pitchblende with concentrated nitric acid and separated by solvent extraction, is reduced with hydrogen at high temperatures to yield the dioxide. [Pg.959]

Kalinich, J.F., Ramakrishnan, N., Villa, V., McClain, D.E. (2002). Depleted uranium-uranyl chloride induces apoptosis in mouse J774 macrophages. Toxicology 179 105-14. [Pg.404]

Miller, A.C., Blakely, W.F., Livengood, D., Whittaker, T., Xu, J., Ejnik, J.W., Hamilton, M.M., Parlette, E., John, T.S., Gerstenberg, H.M., Hsu, H. (1998a). Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride. Environ. Health Perspect. 106 465-71. [Pg.404]

Miller AC, Blakely WF, Livengood D, et al. 1998b. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride. Environ Health Perspect 106 465-471. [Pg.377]

Uranyl sulfate usually appears as a lemon-yellow trihydrate (UO2SO4 3H2O) with a density of 3.28 g cm" and is very soluble in 5 parts of water and 25 parts of alcohol. In geochemistry, oxidation of snlfldes would lead to formation of the sulfate, mainly in an acidic environment where carbonates are not present and cause precipitation of uranium. Uranyl sulfate plays a major role in ore processing as it is readily absorbed on anion-exchange resins and may be extracted with amines. As the uranyl sulfate is very stable, the solutions can be heated to elevated temperatures that help dissolve difficult to digest ores. [Pg.24]

The larger cations of Group 1 (K, Rb, Cs) can be precipitated from aqueous solution as white solids by addition of the reagent sodium tetraphenylborate, NaB(C( H5)4. Sodium can be precipitated as the yellow sodium zinc uranium oxide ethanoate (sodium zinc uranyl acetate). NaZn(U02)3(CH3C00)y. 9H2O. by adding a clear solution of zinc uranyl acetate in dilute ethanoic acid to a solution of a sodium salt. [Pg.136]

Uranium Dissolve 2.1095 g U02(N03)2 6H2O (or 1.7734 g uranyl acetate dihydrate) in water... [Pg.1186]

A rather more specific mechanism of microbial immobilization of metal ions is represented by the accumulation of uranium as an extracellular precipitate of hydrogen uranyl phosphate by a Citrobacter species (83). Staggering amounts of uranium can be precipitated more than 900% of the bacterial dry weight Recent work has shown that even elements that do not readily form insoluble phosphates, such as nickel and neptunium, may be incorporated into the uranyl phosphate crystallites (84). The precipitation is driven by the production of phosphate ions at the cell surface by an external phosphatase. [Pg.36]

Uranium ores are leached with dilute sulfuric acid or an alkaline carbonate [3812-32-6] solution. Hexavalent uranium forms anionic complexes, such as uranyl sulfate [56959-61-6], U02(S0 3, which are more selectively adsorbed by strong base anion exchangers than are other anions in the leach Hquors. Sulfate complexes are eluted with an acidified NaCl or ammonium nitrate [6484-52-2], NH NO, solution. Carbonate complexes are eluted with a neutral brine solution. Uranium is precipitated from the eluent and shipped to other locations for enrichment. Columnar recovery systems were popular in South Africa and Canada. Continuous resin-in-pulp (RIP) systems gained popularity in the United States since they eliminated a difficult and cosdy ore particle/leach hquor separation step. [Pg.387]

Uranium. The uranium product from the PUREX process is in the form of uranyl nitrate which must be converted to some other chemical depending on anticipated use. One route to MO fuel is to mix uranium and plutonium nitrates and perform a coprecipitation step. The precipitate is... [Pg.206]

Homogeneous Aqueous Reactors. As a part of the research on neutron multiphcation at Los Alamos in the 1940s, a small low power reactor was built using a solution of uranium salt. Uranyl nitrate [36478-76-9] U02(N0 2> dissolved in ordinary water, resulted in a homogeneous reactor, having uniformly distributed fuel. This water boiler reactor was spherical. The 235u... [Pg.222]

The homogeneous reactor experiment-2 (HRE-2) was tested as a power-breeder in the late 1950s. The core contained highly enriched uranyl sulfate in heavy water and the reflector contained a slurry of thorium oxide [1314-20-1J, Th02, in D2O. The reactor thus produced fissile uranium-233 by absorption of neutrons in thorium-232 [7440-29-1J, the essentially stable single isotope of thorium. Local deposits of uranium caused reactivity excursions and intense sources of heat that melted holes in the container (18), and the project was terrninated. [Pg.222]

Actinide Peroxides. Many peroxo compounds of thorium, protactinium, uranium, neptunium, plutonium, and americium are known (82,89). The crystal stmctures of a number of these have been deterrnined. Perhaps the best known are uranium peroxide dihydrate [1344-60-1/, UO 2H20, and, the uranium peroxide tetrahydrate [15737-4-5] UO 4H2O, which are formed when hydrogen peroxide is added to an acid solution of a uranyl salt. [Pg.96]

In 1896, Becquerel discovered that uranium was radioactive (3). Becquerel was studying the duorescence behavior of potassium uranyl sulfate, and observed that a photographic plate had been darkened by exposure to the uranyl salt. Further investigation showed that all uranium minerals and metallic uranium behaved in this same manner, suggesting that this new radioactivity was a property of uranium itself In 1934, Fermi bombarded uranium with neutrons to produce new radioactive elements (4). [Pg.313]

Ratios of U and U to Th and Ra daughters, combined with differences in chemical reactivity have been used to investigate the formation and weathering of limestone in karst soils of the Jura Mountains, and of the mountains in the central part of Switzerland. Uranium contained within calcite is released during weathering, and migrates as stable uranyl(VI) carbonato complexes through the soil. In contrast, the uranium decay products, Th and Ra,... [Pg.313]

Ion Excha.nge, The recovery of uranium from leach solutions using ion exchange is a very important process (42). The uranium(VI) is selectively adsorbed to an anion-exchange resin as either the anionic sulfato or carbonato complexes. In carbonate solutions, the uranyl species is thought to be the tris carbonato complex, U02(C03) 3 [24646-13-7] and from sulfate solutions the anion is likely to be U02(S0 , where nis ) [56959-61-6] or 2 [27190-85-8], The uranium is eluted from the resin with a salt or acid solution of 1 AfMCl or MNO (M = H", Na", The sulfate solution is... [Pg.317]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

In practice, uranium ore concentrates are first purified by solvent extraction with tributyl phosphate in kerosene to give uranyl nitrate hexahydrate. The purified uranyl nitrate is then decomposed thermally to UO (eq. 10), which is reduced with H2 to UO2 (eq. 11), which in turn is converted to UF by high temperature hydrofluorination (eq. 12). The UF is then converted to uranium metal with Mg (eq. 19). [Pg.320]

The hydrolysis of the uranyl(VI) ion, UO " 2> has been studied extensively and begins at about pH 3. In solutions containing less than lO " M uranium, the first hydrolysis product is the monomeric U02(OH)", as confirmed using time-resolved laser induced fluorescence spectroscopy. At higher uranium concentrations, it is accepted that polymeric U(VI) species are predominant in solution, and the first hydrolysis product is then the dimer, (U02)2(0H) " 2 (154,170). Further hydrolysis products include the trimeric uranyl hydroxide complexes (U02)3(0H) " 4 and (1102)3(OH)(154). At higher pH, hydrous uranyl hydroxide precipitate is the stable species (171). In studying the sol-gel U02-ceramic fuel process, O nmr was used to observe the formation of a trimeric hydrolysis product, ((U02)3( -l3-0)(p.2-0H)3) which then condenses into polymeric layers of a gel based on the... [Pg.326]

The known uranium(VI) carbonate soHds have empirical formulas, 1102(003), M2U02(C03)2, and M4U02(C03)3. The soHd of composition 1102(003) is a well-known mineral, mtherfordine, and its stmcture has been determined from crystals of both the natural mineral and synthetic samples. Rutherfordine is a layered soHd in which the local coordination environment of the uranyl ion consists of a hexagonal bipyramidal arrangement of oxygen atoms with the uranyl units perpendicular to the orthorhombic plane. Each uranium atom forms six equatorial bonds with the oxygen atoms of four carbonate ligands, two in a bidentate manner and two in a monodentate manner. [Pg.327]

Owing to the stability of the uranyl carbonate complex, uranium is universally present in seawater at an average concentration of ca. 3.2/rgL with a daughter/parent activity ratio U) of 1.14. " In particulate matter and bottom sediments that are roughly 1 x 10 " years old, the ratio should approach unity (secular equilibrium). The principal source of dissolved uranium to the ocean is from physicochemical weathering on the continents and subsequent transport by rivers. Potentially significant oceanic U sinks include anoxic basins, organic rich sediments, phosphorites and oceanic basalts, metalliferous sediments, carbonate sediments, and saltwater marshes. " ... [Pg.43]


See other pages where Uranium uranyl is mentioned: [Pg.267]    [Pg.142]    [Pg.122]    [Pg.127]    [Pg.52]    [Pg.267]    [Pg.142]    [Pg.122]    [Pg.127]    [Pg.52]    [Pg.413]    [Pg.413]    [Pg.822]    [Pg.80]    [Pg.171]    [Pg.205]    [Pg.206]    [Pg.222]    [Pg.316]    [Pg.317]    [Pg.324]    [Pg.325]    [Pg.326]    [Pg.327]    [Pg.327]    [Pg.328]    [Pg.328]    [Pg.332]    [Pg.336]    [Pg.1638]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.113 , Pg.229 ]




SEARCH



Uranium compounds uranyl acetate

Uranium compounds uranyl formate

Uranium compounds uranyl nitrate

Uranium compounds uranyl oxalate

Uranium minerals uranyl arsenates

Uranium minerals uranyl carbonates

Uranium minerals uranyl molybdates

Uranium minerals uranyl oxide hydrates

Uranium minerals uranyl phosphates

Uranium minerals uranyl silicates

Uranium minerals uranyl vanadates

Uranium uranyl compounds

Uranyl

Uranyl compounds uranium leaching

Uranyl oxalate in uranium purification

Uranyl peroxide in uranium purification

© 2024 chempedia.info