Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrasound temperature

External Control. The use of external control to govern the release of dmgs from dehvery systems has largely been experimental. A number of mechanisms have been explored, and include external sources such as electrical currents, magnetism, ultrasound, temperature changes, and irradiation. [Pg.232]

Keywords Ultrasounds, temperature effect, acoustic streaming. [Pg.63]

Keywords Smart polymers Stimuli pH Light Electric field Magnetic field Ultrasound Temperature Ion Enzyme Glucose Hydrogels Nanotubes Films Membranes Nanoparticles Microparticles Micelles ... [Pg.341]

There are various direct measurements of micellar solutions giving access to the dynamics rate constants - mainly based on disturbance of the equilibrium state by imposing various types of perturbations, such as stop flow, ultrasound, temperature and pressure jump [14,15[. This aspect is also not further elaborated here we focus instead on the impact of micellar kinetics on interfacial properties, to demonstrate that tensiometry and dilational rheology are suitable methods to probe the impact of micellar dynamics. The first work on this subject was published by Lucassen already in 1975 [16[ and he showed that the presence of micelles in the bulk have a measurable impact on the adsorption kinetics, and hence on the dilational elasticity, when measured by a longitudinal wave damping technique. Subsequent work demonstrated the effect of micellar dynamics on non-equilibrium interfacial properties [17-29]. The physical idea of the impact of micellar dynamics on the dynamic properties of interfacial layers can be easily understood from the scheme given in Figure 13.1. [Pg.248]

Attenuation is also an important factor in air-bome ultrasound. For exampe, attenuation in air at 1 MHz is 1.2 dB/cm, compared with a figure of 0.0022 dB/cm in water [1]. In addition, environmental conditions (temperature, turbulences) can affect the inspection with air-bome... [Pg.840]

The previous subsection described single-experiment perturbations by J-jumps or P-jumps. By contrast, sound and ultrasound may be used to induce small periodic perturbations of an equilibrium system that are equivalent to periodic pressure and temperature changes. A temperature amplitude 0.002 K and a pressure amplitude 5 P ss 30 mbar are typical in experiments with high-frequency ultrasound. Fignre B2.5.4 illustrates the situation for different rates of chemical relaxation with the angular frequency of the sound wave... [Pg.2121]

Eig. 9. A typical sonochemical apparatus with dkect immersion ultrasonic horn. Ultrasound can be easily introduced into a chemical reaction with good control of temperature and ambient atmosphere. The usual pie2oelectric ceramic is PZT, a lead 2kconate titanate ceramic. Similar designs for sealed... [Pg.261]

Sonochemistry is strongly affected by a variety of external variables, including acoustic frequency, acoustic intensity, bulk temperature, static pressure, ambient gas, and solvent (47). These are the important parameters which need consideration in the effective appHcation of ultrasound to chemical reactions. The origin of these influences is easily understood in terms of the hot-spot mechanism of sonochemistry. [Pg.262]

The phenomenon of acoustic cavitation results in an enormous concentration of energy. If one considers the energy density in an acoustic field that produces cavitation and that in the coUapsed cavitation bubble, there is an amplification factor of over eleven orders of magnitude. The enormous local temperatures and pressures so created result in phenomena such as sonochemistry and sonoluminescence and provide a unique means for fundamental studies of chemistry and physics under extreme conditions. A diverse set of apphcations of ultrasound to enhancing chemical reactivity has been explored, with important apphcations in mixed-phase synthesis, materials chemistry, and biomedical uses. [Pg.265]

Other preparations of succinic acid mentioned in the Hterature are electrochemical reduction of maleic or fumaric acid (153,154), ultrasound-promoted Zn—acetic acid reduction of maleic or fumaric acid (155), reduction of maleic acid with H2PO2 at room temperature (156),... [Pg.537]

The role of cavitation in ultrasound degradation has been confirmed repeatably in most experiments where cavitation was prevented, either by applying an external hydrostatic pressure, by degassing the solution, by reducing the sound intensity or the temperature, polymer chain scission was also largely suppressed [117]. [Pg.121]

The use of ultrasonic (US) radiation (typical range 20 to 850 kHz) to accelerate Diels-Alder reactions is undergoing continuous expansion. There is a parallelism between the ultrasonic and high pressure-assisted reactions. Ultrasonic radiations induce cavitation, that is, the formation and the collapse of microbubbles inside the liquid phase which is accompanied by the local generation of high temperature and high pressure [29]. Snyder and coworkers [30] published the first ultrasound-assisted Diels-Alder reactions that involved the cycloadditions of o-quinone 37 with appropriate dienes 38 to synthesize abietanoid diterpenes A-C (Scheme 4.7) isolated from the traditional Chinese medicine, Dan Shen, prepared from the roots of Salvia miltiorrhiza Bunge. [Pg.154]

Many reactions have been shown to benefit from irradiation with ultrasound (ref. 19). We therefore decided to investigate the effect of ultrasound, different catalysts and the presence of solids on Ullmann diaryl ether synthesis. Indeed, sonication of mixtures of a phenol and a bromoaromatic compound, in the absence of solvent and presence of copper (I) iodide as catalyst and potassium carbonate as base, produces good yields of diaryl ethers at relatively low temperatures (Fig. 10) (ref 20). [Pg.56]

To find the effect of reaction temperature and ultrasoimd for the preparation of nickel powders, hydrothermal reductions were performed at 60 °C, 70 °C and 80 °C for various times by using the conventional and ultrasonic hydrothermal reduction method. Table 1 shows that the induction time, when starts turning the solution s color to black, decreases with increasing the reaction temperature in both the method. The induction time in the ultrasonic method was relatively shorter, compared to the conventional one. It assumes that hydrothermal reduction is faster in the ultrasonic method than the conventional one due to the cavitation effect of ultrasound. [Pg.774]

We have been recently studying new pathways leading to polysilanes with low polydispersity and controlled structures. Our research is focused on three areas. The first one is low temperature reductive coupling in the presence of ultrasound. This leads to monomodal polymers with molecular weights in the range from Mn=50,000 to Mn=300,000 and polydispersities as low as Mw/Mn=1.20 (in addition to usually formed cyclic oligomers). [Pg.79]


See other pages where Ultrasound temperature is mentioned: [Pg.522]    [Pg.351]    [Pg.72]    [Pg.113]    [Pg.522]    [Pg.351]    [Pg.72]    [Pg.113]    [Pg.255]    [Pg.257]    [Pg.260]    [Pg.261]    [Pg.265]    [Pg.49]    [Pg.2064]    [Pg.396]    [Pg.456]    [Pg.457]    [Pg.470]    [Pg.508]    [Pg.705]    [Pg.289]    [Pg.297]    [Pg.298]    [Pg.507]    [Pg.226]    [Pg.227]    [Pg.304]    [Pg.11]    [Pg.986]    [Pg.84]    [Pg.74]    [Pg.156]    [Pg.81]    [Pg.163]    [Pg.172]    [Pg.115]    [Pg.44]    [Pg.78]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



© 2024 chempedia.info