Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rheology dilatant

Dilatant Fluids. Dilatant fluids or shear-thickening fluids are less commonly encountered than pseudoplastic (shear-thinning) fluids. Rheological dilatancy refers to an increase in the apparent viscosity with increasing shear rate (3). In many cases, viscometric data for a shear-thickening fluid can be fit by using the power law model with n > 1. Examples of fluids that are shear-thickening are concentrated solids suspensions. [Pg.134]

Dynamic properties of interfaces have attracted attention for many years because they help in understanding the behaviour of polymer, surfactant or mixed adsorption layers.6 In particular, interfacial rheology (dilational properties) is crucial for many technological processes (emulsions, flotation, foaming, etc).1 The present work deals with the adsorption of MeC at the air-water interface. Because of its amphiphilic character MeC is able to adsorb at the liquid interface thus lowering the surface tension. Our aim is to quantify how surface active this polymer is, and to determine the rheological properties of the layer. A qualitative and quantitative evaluation of the adsorption process and the dilata-tional surface properties have been realised by dynamic interface tension measurements using a drop tensiometer and an axisymmetric drop shape analysis. [Pg.167]

Morgan, R.J. (1968) A study of the phenomena of rheological dilatancy in an aqueous pigment suspension, Trans. Soc. Rheol., 12,511-33. [Pg.116]

For dilutant fluids, n > 1. Rheological dilatancy refers to increasing viscosity with increasing shear rate. Therefore, these fluids are also called shear-thickening. Examples include whipped cream and starch slurries. They are rare in industrial practice. [Pg.151]

As was mentioned earlier, there are two basic methods of measuring interfacial rheology dilational and shear (Murray and Dickinson, 1996). The practical and theoretical aspects underlying these measuring methods are briefly discussed here. [Pg.12]

Dilatant Basically a material with the ability to increase the volume when its shape is changed. A rheological flow characteristic evidenced by an increase in viscosity with increasing rate of shear. The dilatant fluid, or inverted pseudoplastic, is one whose apparent viscosity increases simultaneously with increasing rate of shear for example, the act of stirring creates instantly an increase in resistance to stirring. [Pg.635]

The concepts of interface rheology are derived from the rheology of three-dimensional phases. Characteristic for the interface rheology is the coupling of the motions of an interface with the flow processes in the bulk close to the interface. Thus, in interface rheology the shear and dilatational stresses of the interface are in equilibrium with the corresponding shear stress in the bulk. An important feature is the compressibility of the adsorption layer of an interface in contrast, the flow elements of the bulk are incompressible. As a result, compression or dilatation of the adsorption layer of a soluble surfactant is associated with desorption and adsorption processes by which the interface tends to reinstate the adsorption equilibrium with the bulk phase. [Pg.184]

I. C. Callaghan, C. M. Gould, R. J. Hamilton, and E. L. Neustadter. The relationship between the dilatational rheology and crude oil foam stability 1. Preliminary studies. Colloids and Surfaces, 8(1) 17-28, November 1983. [Pg.367]

Newtonian flow, and their viscosity is not constant but changes as a function of shear rate and/or time. The rheological properties of such systems cannot be defined simply in terms of one value. These non-Newtonian phenomena are either time-independent or time-dependent. In the first case, the systems can be classified as pseudoplastic, plastic, or dilatant, in the second case as thixotropic or rheopective. [Pg.254]

The rheological properties of a fluid interface may be characterized by four parameters surface shear viscosity and elasticity, and surface dilational viscosity and elasticity. When polymer monolayers are present at such interfaces, viscoelastic behavior has been observed (1,2), but theoretical progress has been slow. The adsorption of amphiphilic polymers at the interface in liquid emulsions stabilizes the particles mainly through osmotic pressure developed upon close approach. This has become known as steric stabilization (3,4.5). In this paper, the dynamic behavior of amphiphilic, hydrophobically modified hydroxyethyl celluloses (HM-HEC), was studied. In previous studies HM-HEC s were found to greatly reduce liquid/liquid interfacial tensions even at very low polymer concentrations, and were extremely effective emulsifiers for organic liquids in water (6). [Pg.185]

Polymer rheology can respond nonllnearly to shear rates, as shown in Fig. 3.4. As discussed above, a Newtonian material has a linear relationship between shear stress and shear rate, and the slope of the response Is the shear viscosity. Many polymers at very low shear rates approach a Newtonian response. As the shear rate is increased most commercial polymers have a decrease in the rate of stress increase. That is, the extension of the shear stress function tends to have a lower local slope as the shear rate is increased. This Is an example of a pseudoplastic material, also known as a shear-thinning material. Pseudoplastic materials show a decrease in shear viscosity as the shear rate increases. Dilatant materials Increase in shear viscosity as the shear rate increases. Finally, a Bingham plastic requires an initial shear stress, to, before it will flow, and then it reacts to shear rate in the same manner as a Newtonian polymer. It thus appears as an elastic material until it begins to flow and then responds like a viscous fluid. All of these viscous responses may be observed when dealing with commercial and experimental polymers. [Pg.65]

Dilatant Fluids. Dilatant fluids display a rheological behavior opposite to that of pseudoplastics (Figs. 2 and 3) in that the apparent... [Pg.86]

Dilatational surface rheology is a less discriminating experimental technique. At air-water and sunflower oil-water interfaces, it is found (Lucassen-Reynders and Benjamins, 1999) that both disordered p-casein... [Pg.317]

Lucassen-Reynders, E.H., Benjamins, J. (1999). Dilational rheology of proteins adsorbed at fluid interfaces. In Dickinson, E., Rodriguez Patino, J.M. (Eds). Food Emulsions and Foams Interfaces, Interactions and Stability, Cambridge, UK Royal Society of Chemistry, pp. 195-206. [Pg.350]

Wijmans, C.M., Dickinson, E. (1998). Simulation of interfacial shear and dilatational rheology of an adsorbed protein monolayer modeled as a network of spherical particles. Langmuir, 14, 7278-7286. [Pg.353]

Dilatant liquids have rheological behavior essentially... [Pg.103]

Feed rheology (liquid) Newtonjan/pseudoplastic/dilatant/Bingham plastic/thixotropic/rheopectic/viscoelastic... [Pg.808]

The results of the latest research into helical flow of viscoplastic fluids (media characterized by ultimate stress or yield point ) have been systematized and reported most comprehensively in a recent preprint by Z. P. Schulman, V. N. Zad-vornyh, A. I. Litvinov 15). The authors have obtained a closed system of equations independent of a specific type of rheological model of the viscoplastic medium. The equations are represented in a criterion form and permit the calculation of the required characteristics of the helical flow of a specific fluid. For example, calculations have been performed with respect to generalized Schulman s model16) which represents adequately the behavior of various paint compoditions, drilling fluids, pulps, food masses, cement and clay suspensions and a number of other non-Newtonian media characterized by both pseudoplastic and dilatant properties. [Pg.45]

We can distinguish between two types of stresses on an interface a shear stress and a dilatational stress. In a shear stress experiment, the interfacial area is kept constant and a shear is imposed on the interface. The resistance is characterized by a shear viscosity, similar to the Newtonian viscosity of fluids. In a dilatational stress experiment, an interface is expanded (dilated) without shear. This resistance is characterized by a dilatational viscosity. In an actual dynamic situation, the total stress is a sum of these stresses, and both these viscosities represent the total flow resistance afforded by the interface to an applied stress. There are a number of instruments to study interfacial rheology and most of them are described in Ref. [1]. The most recent instrumentation is the controlled drop tensiometer. [Pg.2]

Figure 24. A comparison of the data obtained from a range of surface rheological measurements of samples of /3-lg as a function of Tween 20 concentration. ( ), The surface diffusion coefficient of FITC-jS-lg (0.2 mg/ml) at the interfaces of a/w thin films (X), the surface shear viscosity of /3-lg (0.01 mg/ml) at the o/w interface after 5 hours adsorption ( ), the surface dilational elasticity and (o) the dilational loss modulus of /3-lg (0.2 mg/ml). Figure 24. A comparison of the data obtained from a range of surface rheological measurements of samples of /3-lg as a function of Tween 20 concentration. ( ), The surface diffusion coefficient of FITC-jS-lg (0.2 mg/ml) at the interfaces of a/w thin films (X), the surface shear viscosity of /3-lg (0.01 mg/ml) at the o/w interface after 5 hours adsorption ( ), the surface dilational elasticity and (o) the dilational loss modulus of /3-lg (0.2 mg/ml).
The surface rheological properties of the /3-lg/Tween 20 system at the macroscopic a/w interface were examined by a third method, namely surface dilation [40]. Sample data obtained are presented in Figure 24. The surface dilational modulus, (E) of a liquid is the ratio between the small change in surface tension (Ay) and the small change in surface area (AlnA). The surface dilational modulus is a complex quantity. The real part of the modulus is the storage modulus, e (often referred to as the surface dilational elasticity, Ed). The imaginary part is the loss modulus, e , which is related to the product of the surface dilational viscosity and the radial frequency ( jdu). [Pg.54]

G. Garofalakis and B. S. Murray, Surface pressure isotherms, dilatational rheology, and brewster angle microscopy of insoluble monolayers of sugar monoesters, Langmuir, 18 (2002) 4765-4774. [Pg.289]

The dilational rheology behavior of polymer monolayers is a very interesting aspect. If a polymer film is viewed as a macroscopy continuum medium, several types of motion are possible [96], As it has been explained by Monroy et al. [59], it is possible to distinguish two main types capillary (or out of plane) and dilational (or in plane) [59,60,97], The first one is a shear deformation, while for the second one there are both a compression - dilatation motion and a shear motion. Since dissipative effects do exist within the film, each of the motions consists of elastic and viscous components. The elastic constant for the capillary motion is the surface tension y, while for the second it is the dilatation elasticity e. The latter modulus depends upon the stress applied to the monolayer. For a uniaxial stress (as it is the case for capillary waves or for compression in a single barrier Langmuir trough) the dilatational modulus is the sum of the compression and shear moduli [98]... [Pg.186]

The dilatational rheology of the poly(vinylacetate) monolayer onto an aqueous subphase has been studied between 1°C and 25°C by Monroy et al. [59], These authors have used the combination of several techniques. By this way, the exploration of a broad frequency range was possible. The relaxation experiments have shown multiexponential decay curves, whose complexity increases with decreasing the temperature. A regularization technique has been used to obtain the relaxation spectra from the relaxation curves and the dilatational viscoelastic parameters have been calculated from the spectra. The shapes of the relaxation spectra agree with the predictions of the theoretical model proposed by Noskov [100],... [Pg.187]

When starch is added to cold water (below 29°C, 85°F), only negligible swelling will occur. However, the suspension volume expands, since the insoluble starch replaces water. Addition of starch to water at a concentration of 10% will increase the volume by 13%. The maximum in suspension solids is 40-45%. Various methods are used to determine the solids content of the starch slurry aerometer,92 density cells, densitometer, attenuation of vibration (Dynatrol) or a radiation-type density meter. Concentrated starch slurries have high viscosity and shear thickening (dilatent) rheology. Settling of starch from the slurry produces densely packed sediments that are difficult to disperse. [Pg.673]


See other pages where Rheology dilatant is mentioned: [Pg.1239]    [Pg.13]    [Pg.224]    [Pg.1239]    [Pg.13]    [Pg.224]    [Pg.140]    [Pg.111]    [Pg.125]    [Pg.394]    [Pg.631]    [Pg.657]    [Pg.1851]    [Pg.108]    [Pg.97]    [Pg.170]    [Pg.308]    [Pg.125]    [Pg.495]    [Pg.34]    [Pg.295]    [Pg.5]    [Pg.32]    [Pg.156]    [Pg.193]    [Pg.50]   
See also in sourсe #XX -- [ Pg.240 , Pg.243 ]

See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Dilatancy

Dilatant

Dilatational interfacial/surface rheology

Dilated

Dilational rheological

Dilational rheological

Dilational rheology

Dilational surface rheology

Dilator

Interfacial dilational rheology

Polymer rheology dilatant

Surface rheology dilational elasticity

Surface rheology dilational modulus

Surface rheology dilational viscosity

© 2024 chempedia.info