Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrafiltration solute flux

The final parameter in Equation (4.9) that determines the value of the concentration polarization modulus is the diffusion coefficient A of the solute away from the membrane surface. The size of the solute diffusion coefficient explains why concentration polarization is a greater factor in ultrafiltration than in reverse osmosis. Ultrafiltration membrane fluxes are usually higher than reverse osmosis fluxes, but the difference between the values of the diffusion coefficients of the retained solutes is more important. In reverse osmosis the solutes are dissolved salts, whereas in ultrafiltration the solutes are colloids and macromolecules. The diffusion coefficients of these high-molecular-weight components are about 100 times smaller than those of salts. [Pg.171]

Experiments with different ultrafiltration membranes and the same feed solution often yield very different ultrafiltration limiting fluxes. But according to the model shown in Figure 6.6 and represented by Equation (6.2), the ultrafiltration limiting flux is independent of the membrane type. [Pg.249]

Mass-transport limitations are common to all processes involving mass transfer at interfaces, and membranes are not an exception. This problem can be extremely important both for situations where the transport of solvent through the membrane is faster and preferential when compared with the transport of solute(s) - which happens with membrane filtration processes such as microfiltration and ultrafiltration - as well as with processes where the flux of solute(s) is preferential, as happens in organophilic pervaporation. In the first case, the concentration of solute builds up near the membrane interface, while in the second case a depletion of solute occurs. In both situations the performance of the system is affected negatively (1) solute accumulation leads, ultimately, to a loss of selectivity for solute rejection, promotes conditions for membrane fouling and local increase of osmotic pressure difference, which impacts on solvent flux (2) solute depletion at the membrane surface diminishes the driving force for solute transport, which impacts on solute flux and, ultimately, on the overall process selectivity towards the transport of that specific solute. [Pg.246]

It is therefore highly desirable to develop more quantitative methods for characterization of pore structures. The results of recent investigations, including ultrafiltration (water flux and rejection of a polydisperse solute), high-resolution SEM and nitrogen sorption/desorption analysis, are described below. [Pg.340]

Lower-molecular-weight solutes such as myoglobin and inulin, have 0solute flux during ultrafiltration. Local filtrate concentration, Cp, is then given by... [Pg.76]

A decrease in hydrostatic pressure along the fiber due to resistance to substrate solution flow occurs so that at a definite distance from the inlet, say Lc, transmembrane pressure is nil. Fiber-to-shell solution flux from that point on is negative and becomes a shell-to-fiber flux. Neglecting the shell pressure drop, the overall fiber-to-shell ultrafiltration net flow rate can then be obtained upon integration of the flux equation over the length of the fiber from the inlet to Lc, that is ... [Pg.452]

In practice it is used to separate species that differ appreciably in size, which have a reasonably large difference in diffusion rates. Solute fluxes depend on the concentration gradient in the membrane. Hence, dialysis is characterized by low flux rates, in comparison to other membrane processes, such as reverse osmosis and ultrafiltration, membrane processes that depend on applied pressure. [Pg.757]

Figure 8.8. Dependence of membrane flux J on (a) Applied pressure difference AP, (b) Feed solute concentration Cf, (c) Cross-flow velocity (u) for ultrafiltration... Figure 8.8. Dependence of membrane flux J on (a) Applied pressure difference AP, (b) Feed solute concentration Cf, (c) Cross-flow velocity (u) for ultrafiltration...
Also included are sections on how to analyze mechanisms that affect flux feature models for prediction of micro- and ultrafiltration flux that help you minimize flux decline. Descriptions of cross-flow membrane filtration and common operating configurations clarify tf e influence of important operating parameters on system performance. Parameters irdlucnc irxj solute retention properties during ultrafiltration arc identified and discussed or treated in detail. [Pg.150]

Flat membranes from these polymers were tested for desalination and found to be of low salt rejecting type. Hov/ever, the copolymer was found to possess more than 90 per cent rejection for 1 per cent dextran solution with 10.0 gfd water flux at 200 psi thus indicating the possibility of application of these membranes in ultrafiltration and hemodialysis. [Pg.297]

In Smolders ultrafiltration experiments, 4,000,000 mw polyethylene glycol was used as the solute (500ppm), Small particles (0.5mm) in the fluidized bed failed to augment the flux to any significant degree. Larger particles (2.0mm) resulted in a twofold increase in flux. Smolders concluded that the momentum of the 0.5mm particles was insufficient to remove the gel-layer. [Pg.439]

In ultrafiltration and reverse osmosis, in which solutions are concentrated by allowing the solvent to permeate a semi-permeable membrane, the permeate flux (i.e. the flow of permeate or solvent per unit time, per unit membrane area) declines continuously during operation, although not at a constant rate. Probably the most important contribution to flux decline is the formation of a concentration polarisation layer. As solvent passes through the membrane, the solute molecules which are unable to pass through become concentrated next to the membrane surface. Consequently, the efficiency of separafion decreases as fhis layer of concentrated solution accumulates. The layer is established within the first few seconds of operation and is an inevitable consequence of the separation of solvent and solute. [Pg.234]

Figure 8.2 Filtrate flux versus TMP in ultrafiltration of serum solutions. Figure 8.2 Filtrate flux versus TMP in ultrafiltration of serum solutions.
R.W. Baker and H. Strathmann, Ultrafiltration of Macromolecular Solutions with High-flux Membranes, J. Appl. Polym. Sci. 14, 1197 (1970). [Pg.86]

The production by Loeb and Sourirajan of the first successful anisotropic membranes spawned numerous other techniques in which a microporous membrane is used as a support for a thin, dense separating layer. One of the most important of these was interfacial polymerization, an entirely new method of making anisotropic membranes developed by John Cadotte, then at North Star Research. Reverse osmosis membranes produced by this technique had dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Souri-rajan process. Almost all reverse osmosis membranes are now made by the interfacial polymerization process, illustrated in Figure 3.20. In this method, an aqueous solution of a reactive prepolymer, such as a polyamine, is first deposited in the pores of a microporous support membrane, typically a polysul-fone ultrafiltration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, such as a diacid chloride in hexane. The amine and acid chloride react at the interface of the two immiscible... [Pg.116]

Two other major factors determining module selection are concentration polarization control and resistance to fouling. Concentration polarization control is a particularly important issue in liquid separations such as reverse osmosis and ultrafiltration. In gas separation applications, concentration polarization is more easily controlled but is still a problem with high-flux, highly selective membranes. Hollow fine fiber modules are notoriously prone to fouling and concentration polarization and can be used in reverse osmosis applications only when extensive, costly feed solution pretreatment removes all particulates. These fibers cannot be used in ultrafiltration applications at all. [Pg.152]

The layer of solution immediately adjacent to the membrane surface becomes depleted in the permeating solute on the feed side of the membrane and enriched in this component on the permeate side. Equivalent gradients also form for the other component. This concentration polarization reduces the permeating component s concentration difference across the membrane, thereby lowering its flux and the membrane selectivity. The importance of concentration polarization depends on the membrane separation process. Concentration polarization can significantly affect membrane performance in reverse osmosis, but it is usually well controlled in industrial systems. On the other hand, membrane performance in ultrafiltration, electrodialysis, and some pervaporation processes is seriously affected by concentration polarization. [Pg.161]

Figure 4.11 shows that ultrafiltration and pervaporation for the removal of organic solutes from water are both seriously affected by concentration polarization. In ultrafiltration, the low diffusion coefficient of macromolecules produces a concentration of retained solutes 70 times the bulk solution volume at the membrane surface. At these high concentrations, macromolecules precipitate, forming a gel layer at the membrane surface and reducing flux. The effect of this gel layer on ultrafiltration membrane performance is discussed in Chapter 6. [Pg.177]

Figure 6.5 Ultrafiltration flux as a function of time of an electrocoat paint latex solution. Because of fouling, the flux declines over a period of days. Periodic cleaning is required to maintain high fluxes [14]. Reprinted from R. Walker, Recent Developments in Ultrafiltration of Electrocoat Paint, Electrocoat 82, 16 (1982) with permission from Gardner Publications, Inc., Cincinnati, OH... Figure 6.5 Ultrafiltration flux as a function of time of an electrocoat paint latex solution. Because of fouling, the flux declines over a period of days. Periodic cleaning is required to maintain high fluxes [14]. Reprinted from R. Walker, Recent Developments in Ultrafiltration of Electrocoat Paint, Electrocoat 82, 16 (1982) with permission from Gardner Publications, Inc., Cincinnati, OH...
The effect of the gel layer on the flux through an ultrafiltration membrane at different feed pressures is illustrated in Figure 6.7. At a very low pressure p, the flux Jv is low, so the effect of concentration polarization is small, and a gel layer does not form on the membrane surface. The flux is close to the pure water flux of the membrane at the same pressure. As the applied pressure is increased to pressure p2, the higher flux causes increased concentration polarization, and the concentration of retained material at the membrane surface increases. If the pressure is increased further to p3, concentration polarization becomes enough for the retained solutes at the membrane surface to reach the gel concentration cgel and form the secondary barrier layer. This is the limiting flux for the membrane. Further increases in pressure only increase the thickness of the gel layer, not the flux. [Pg.246]

Figure 6.9 Ultrafiltration flux with a latex solution at an applied pressure of 60 psi (in the limiting flux region) as a function of feed solution latex concentration. These results were obtained in a high-turbulence, thin-channel cell. The solution recirculation rate is shown in the figure [13]... Figure 6.9 Ultrafiltration flux with a latex solution at an applied pressure of 60 psi (in the limiting flux region) as a function of feed solution latex concentration. These results were obtained in a high-turbulence, thin-channel cell. The solution recirculation rate is shown in the figure [13]...
Figure 6.10 Effect of solute type and concentration on flux through the same type of ultrafiltration membrane operated under the same conditions [15]. Reproduced from M.C. Porter, Membrane Filtration, in Handbook of Separation Techniques for Chemical Engineers, P.A. Schweitzer (ed.), p. 2.39, Copyright 1979, with permission of McGraw-Hill, New York, NY... Figure 6.10 Effect of solute type and concentration on flux through the same type of ultrafiltration membrane operated under the same conditions [15]. Reproduced from M.C. Porter, Membrane Filtration, in Handbook of Separation Techniques for Chemical Engineers, P.A. Schweitzer (ed.), p. 2.39, Copyright 1979, with permission of McGraw-Hill, New York, NY...

See other pages where Ultrafiltration solute flux is mentioned: [Pg.249]    [Pg.417]    [Pg.122]    [Pg.429]    [Pg.421]    [Pg.955]    [Pg.990]    [Pg.955]    [Pg.493]    [Pg.2039]    [Pg.2055]    [Pg.609]    [Pg.461]    [Pg.442]    [Pg.448]    [Pg.159]    [Pg.163]    [Pg.296]    [Pg.99]    [Pg.632]    [Pg.71]    [Pg.78]    [Pg.104]    [Pg.134]    [Pg.211]    [Pg.241]    [Pg.244]    [Pg.260]    [Pg.264]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Flux solute

Ultrafiltrate

© 2024 chempedia.info