Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyrosine reaction with

A method that has been the standard of choice for many years is the Lowry procedure. This method uses Cn ions along with Folin-Ciocalteau reagent, a combination of phosphomolybdic and phosphotnngstic acid complexes that react with Cn. Cn is generated from Cn by readily oxidizable protein components, such as cysteine or the phenols and indoles of tyrosine and tryptophan. Although the precise chemistry of the Lowry method remains uncertain, the Cn reaction with the Folin reagent gives intensely colored products measurable spectrophotometrically. [Pg.129]

The reaction of Ccf -ATPase with dicyclohexylcarbodiimide Carbodiimides readily react in aqueous solutions with protein amino, carboxyl and sulfhydryl groups slower reactions with tyrosine and serine have also been reported [369,370]. The primary reaction product of carboxyl groups with dicyclohexylcarbodiimide is dicyclohexyl-O-acyl isourea [370]. Dicyclohexyl-O-acyl isourea is susceptible to nucleophilic attack either by water or by endogenous or exogenous nucleophiles, yielding a complex series of reaction products [369-371]. [Pg.96]

The synthesized CPMV-alkyne 42 was subjected to the CuAAC reaction with 38. Due to the strong fluorescence of the cycloaddition product 43 as low as 0.5 nM, it could be detected without the interference of starting materials. TMV was initially subjected to an electrophilic substitution reaction at the ortho-position of the phenol ring of tyrosine-139 residues with diazonium salts to insert the alkyne functionality, giving derivative 44 [100]. The sequential CuAAC reaction was achieved with greatest efficiency yielding compound 45, and it was found that the TMV remained intact and stable throughout the reaction. [Pg.42]

Combining, in tandem, the nitro-aldol reaction with the Michael addition using thiophenol is a good method for the preparation of P-nitro sulfides as shown in Eqs. 4.2 and 4.3. This reaction is applied to a total synthesis of tuberine. Tuberine is a simple enamide isolated from Streptomyces amakusaensis and has some structural resemblance to erbastatin, an enamide which has received much attention in recent years as an inhibitor of tyrosine-specific kinases. The reaction of p-anisaldehyde and nitromethane in the presence of thiophenol yields the requisite P-nitro sulfide, which is converted into tuberine via reduction, formylation, oxidation, and thermal elimination of... [Pg.79]

A classical approach to driving the unfavorable equilibrium of an enzymatic process is to couple it to another, irreversible enzymatic process. Griengl and coworkers have applied this concept to asymmetric synthesis of 1,2-amino alcohols with a threonine aldolase [24] (Figure 6.7). While the equilibrium in threonine aldolase reactions typically does not favor the synthetic direction, and the bond formation leads to nearly equal amounts of two diastereomers, coupling the aldolase reaction with a selective tyrosine decarboxylase leads to irreversible formation of aryl amino alcohols in reasonable enantiomeric excess via a dynamic kinetic asymmetric transformation. A one-pot, two-enzyme asymmetric synthesis of amino alcohols, including noradrenaline and octopamine, from readily available starting materials was developed [25]. [Pg.131]

Figure 16.3 Conceptual illustration of two peptides before (left) and after (right) a chemical reaction with formaldehyde. The amino acids are represented as circles. In this particular peptide, a tyrosine (Y) is located within the epitope (shaded circles). An arginine (R) is located elsewhere in the peptide. Formaldehyde results in the formation of a covalent bond between the two residues, due to a Mannich condensation reaction, as shown on the right. The new configuration prevents antibodies from binding to the epitope on the left. [Pg.291]

Figure 4.33 Benzidine can be diazotized with sodium nitrite and HC1 for reaction with proteins through their tyrosine, histidine, or lysine side-chain groups. Figure 4.33 Benzidine can be diazotized with sodium nitrite and HC1 for reaction with proteins through their tyrosine, histidine, or lysine side-chain groups.
A sulfonyl chloride group rapidly reacts with amines in the pH range of 9-10 to form stable sulfonamide bonds. Under these conditions, it also may react with tyrosine —OH groups, aliphatic alcohols, thiols, and histidine side chains. Conjugates of sulfonyl chlorides with sulf-hydryls and imidazole rings are unstable, while esters formed with alcohols are subject to nucleophilic displacement (Nillson and Mosbach, 1984 Scouten and Van der Tweel, 1984). The only stable derivative with proteins therefore is the sulfonamide, formed by reaction with e-lysine... [Pg.424]

On the other hand, in accord with the free radical mechanism peroxynitrite is dissociated into free radicals, which are supposed to be genuine reactive species. Although free radical mechanism was proposed as early as in 1970 [111], for some time it was not considered to be a reliable one because a great confusion ensued during the next two decades because of misinterpretations of inconclusive experiments, sometimes stimulated by improper thermodynamic estimations [85]. The latest experimental data supported its reliability [107-109]. Among them, the formation of dityrosine in the reaction with tyrosine and 15N chemically induced dynamic nuclear polarization (CIDNP) in the NMR spectra of the products of peroxynitrite reactions are probably the most convincing evidences (see below). [Pg.702]

Now, we will consider the major reactions of peroxynitrite with biomolecules. It was found that peroxynitrite reacts with many biomolecules belonging to various chemical classes, with the bimolecular rate constants from 10-3 to 10s 1 mol 1 s 1 (Table 21.2). Reactions of peroxynitrite with phenols were studied most thoroughly due to the important role of peroxynitrite in the in vivo nitration and oxidation of free tyrosine and tyrosine residues in proteins. In 1992, Beckman et al. [112] have showed that peroxynitrite efficiently nitrates 4-hydroxyphenylacetate at pH 7.5. van der Vliet et al. [113] found that the reactions of peroxynitrite with tyrosine and phenylalanine resulted in the formation of both hydroxylated and nitrated products. In authors opinion the formation of these products was mediated by N02 and HO radicals. Studying peroxynitrite reactions with phenol, tyrosine, and salicylate, Ramezanian et al. [114] showed that these reactions are of first-order in peroxynitrite and zero-order in phenolic compounds. These authors supposed that there should be two different intermediates responsible for the nitration and hydroxylation of phenols but rejected the most probable proposal that these intermediates should be NO2 and HO. ... [Pg.702]

The reaction of peroxynitrite with the biologically ubiquitous C02 is of special interest due to the presence of both compounds in living organisms therefore, we may be confident that this process takes place under in vivo conditions. After the discovery of this reaction in 1995 by Lymar [136], the interaction of peroxynitrite with carbon dioxide and the reactions of the formed adduct nitrosoperoxocarboxylate ONOOCOO has been thoroughly studied. In 1996, Lymar et al. [137] have shown that this adduct is more reactive than peroxynitrite in the reaction with tyrosine, forming similar to peroxynitrite dityrosine and 3-nitrotyrosine. Experimental data were in quantitative agreement with free radical-mediated mechanism yielding tyrosyl and nitric dioxide radicals as intermediates and were inconsistent with electrophilic mechanism. The lifetime of ONOOCOO was estimated as <3 ms, and the rate constant of Reaction (42) k42 = 2 x 103 1 mol 1 s 1. [Pg.705]

Similar chemistry was used to synthesize pyridyl(methyl)phthalazines, 193, inhibitors of the VEGF receptor tyrosine kinase. The active inhibitors 193 were formed by condensation of 192 with hydrazine, followed by POCI3 chlorination. <00JMC2310>. Furthermore, a simple substitution reaction with p-chloroaniline gave anilinophthalazine 194. [Pg.281]

Melanin is formed by a photochemical reaction, so the concentration of melanin within the human epidermis (the outer layer of the skin) increases following exposure to photochemical reactions with tyrosine in the skin. This increase is seen readily by the formation of a suntan. This increase in the concentration of melanin following exposure to the sun is more obvious for fair-skinned people, although darker people usually tan more quickly because melanin is produced more efficiently in their skins. [Pg.437]

In some cases, mutation can lead to enhanced catalytic ability of the enzyme. Results for the mutation Thr-51 to Pro-51 (Wilkinson et al 1984) have been mentioned previously. The results for this and for the mutation Thr-51 to Ala-51 (Fersht e/ al., 1985) are also shown in Table 18. These mutations and that of Thr-51 to Cys-51 have been studied in some detail (Ho and Fersht, 1986). In each case it is found that the transition state is stabilized for formation of tyrosine adenylate from tyrosine and ATP within the enzyme the mutant Thr-51 to Pro-51 increases the rate coefficient for the reaction by a factor of 20. However, the enzyme-bound tyrosine adenylate is also stabilized by the mutation and this results in a reduced rate of reaction of tyrosine adenylate with tRNA (48), the second step in the process catalysed by tyrosine tRNA synthetase. Overall, therefore, the mutants are poorer catalysts for the formation of aminoacyl tRNA. The enzyme from E. coli has the residue Pro-51 whereas Thr-51 is present in the enzyme from B. stearothermophilus. The enzyme from E. coli is more active than the latter enzyme in both the formation of tyrosine adenylate and in the aminoacyla-tion of tRNA (Jones et al., 1986b). It is therefore suggested (Ho and Fersht, 1986) that the enzyme from E. coli with Pro-51 must additionally have evolved ways of stabilizing the transition state for formation of tyrosine adenylate without the concomitant stabilization of tyrosine adenylate and reduction in the rate of aminoacylation of tRNA found for the Pro-51 mutant. [Pg.365]

Chemical Reviews paper. We can only discuss a small number of these here, but some important categories are (1) synthetic Fe(II)-Cu(I) complexes and their reactions with O2, (2) oxidized heme-copper models (Fe(III)-X-Cu(II) complexes, where X equals 0x0- and hydroxo-bridged complexes, cyanide-bridged complexes, or other X-bridged complexes), (3) crosslinked histidine-tyrosine residues at the heme-copper center, and (4) Cua site synthetic models. [Pg.441]

Already in 1982, it was suggested that the intermediate chromium(V) state is involved in the carcinogenic process.9 Reactive Cr(V) and Cr(IV) intermediates may be harmful in many ways acting as tyrosine phosphatase inhibitors, or by forming organic radicals upon reaction with cellular reductants, which in turn can react with O2 and lead to reactive oxygen species.10 Reaction of chromium(VI) with... [Pg.70]

Sulfation of tyrosine peptides with pyridinium acetylsulfate has been mainly carried out in DMF/pyridine mixtures at room temperature (Scheme 8), where various excess reagents and reaction times are required for quantitative sulfation depending on the peptide and reaction conditions. [Pg.436]

The piperazine-substituted pyrimido[5,4-< ][l,2,4]triazine 103 undergoes selective reaction with benzylic halides to provide the benzylic piperazinyl analogues 104 <2003BML2895> as shown in Equation (15). The products are protein tyrosine phosphatase inhibitors. [Pg.1289]


See other pages where Tyrosine reaction with is mentioned: [Pg.50]    [Pg.363]    [Pg.296]    [Pg.119]    [Pg.146]    [Pg.257]    [Pg.290]    [Pg.106]    [Pg.203]    [Pg.422]    [Pg.548]    [Pg.753]    [Pg.758]    [Pg.735]    [Pg.741]    [Pg.195]    [Pg.177]    [Pg.1089]    [Pg.52]    [Pg.357]    [Pg.365]    [Pg.366]    [Pg.453]    [Pg.23]    [Pg.24]    [Pg.245]    [Pg.972]    [Pg.63]    [Pg.972]    [Pg.703]   


SEARCH



Diazonium reaction with tyrosine

Iodine reaction with tyrosine

Tyrosine photo reaction with

Tyrosine reaction with nitrous acid

Tyrosine, reactions

© 2024 chempedia.info