Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxynitrite reaction with

The inactivation of enzymes containing the zinc-thiolate moieties by peroxynitrite may initiate an important pathophysiological process. In 1995, Crow et al. [129] showed that peroxynitrite disrupts the zinc-thiolate center of yeast alcohol dehydrogenase with the rate constant of 3.9 + 1.3 x 1051 mol-1 s-1, yielding the zinc release and enzyme inactivation. Later on, it has been shown [130] that only one zinc atom from the two present in the alcohol dehydrogenase monomer is released in the reaction with peroxynitrite. Recently, Zou et al. [131] reported the same reaction of peroxynitrite with endothelial NO synthase, which is accompanied by the zinc release from the zinc-thiolate cluster and probably the formation of disulfide bonds between enzyme monomers. The destruction of zinc-thiolate cluster resulted in a decrease in NO synthesis and an increase in superoxide production. It has been proposed that such a process might be the mechanism of vascular disease development, which is enhanced by diabetes mellitus. [Pg.705]

In addition to superoxide and hydroxyl radicals, luminol produces CL in the reaction with peroxynitrite [67], To discriminate between superoxide- and peroxynitrite-induced CL, the use of lucigenin-amplified CL has been recommended [68] because peroxynitrite does not interfere in this assay. Another way is to apply the inhibitors of peroxynitrite to distinguish between superoxide- and peroxynitrite-induced luminol CL. [Pg.969]

Fe EDTA (7000 M sec ) (Beckman et al., 1992). Moreover, the reaction with peroxynitrite does not require that iron first be reduced by superoxide or another reductant to be toxic. [Pg.53]

Niles JC, Wishnok JS, Tannenbaum SR (2001) Spiroiminohydantoin is the major product of 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols, and guanosine photooxidation by methylene blue. Oig Lett 3 763 766... [Pg.88]

The scavenging and quenching mechanism described above would apply to the redox cycle of Mn(III)/Mn(IV) porphyrin or Mn(II)/Mn(III) texaphyrin. The environment of the Mn in the texaphyrin stabilizes the +2 state and does not allow the Mn to become oxidized to +4 (32). Under in vitro conditions, the Mn in the porphyrin exists in the +3 state and does cycle to +4 upon reaction with peroxynitrite (27-31). However, in the presence of reductants (and at much lower oxygen tensions), as would exist intraceUularly, the porphyrin Mn would likely exist in the +2 state a redox cycle from +2 to +4 would allow it to con5)letely reduce peroxynitrite and thereby totally quench its oxidative reactivity (31,30). [Pg.301]

Nitric oxide is a physiological substrate for mammalian peroxidases [myeloperoxide (MPO), eosinophil peroxide, and lactoperoxide), which catalytically consume NO in the presence of hydrogen peroxide [60], On the other hand, NO does not affect the activity of xanthine oxidase while peroxynitrite inhibits it [61]. Nitric oxide suppresses the inactivation of CuZnSOD and NO synthase supposedly via the reaction with hydroxyl radicals [62,63]. On the other hand, SOD is able to modulate the nitrosation reactions of nitric oxide [64]. [Pg.699]

On the other hand, in accord with the free radical mechanism peroxynitrite is dissociated into free radicals, which are supposed to be genuine reactive species. Although free radical mechanism was proposed as early as in 1970 [111], for some time it was not considered to be a reliable one because a great confusion ensued during the next two decades because of misinterpretations of inconclusive experiments, sometimes stimulated by improper thermodynamic estimations [85]. The latest experimental data supported its reliability [107-109]. Among them, the formation of dityrosine in the reaction with tyrosine and 15N chemically induced dynamic nuclear polarization (CIDNP) in the NMR spectra of the products of peroxynitrite reactions are probably the most convincing evidences (see below). [Pg.702]

Now, we will consider the major reactions of peroxynitrite with biomolecules. It was found that peroxynitrite reacts with many biomolecules belonging to various chemical classes, with the bimolecular rate constants from 10-3 to 10s 1 mol 1 s 1 (Table 21.2). Reactions of peroxynitrite with phenols were studied most thoroughly due to the important role of peroxynitrite in the in vivo nitration and oxidation of free tyrosine and tyrosine residues in proteins. In 1992, Beckman et al. [112] have showed that peroxynitrite efficiently nitrates 4-hydroxyphenylacetate at pH 7.5. van der Vliet et al. [113] found that the reactions of peroxynitrite with tyrosine and phenylalanine resulted in the formation of both hydroxylated and nitrated products. In authors opinion the formation of these products was mediated by N02 and HO radicals. Studying peroxynitrite reactions with phenol, tyrosine, and salicylate, Ramezanian et al. [114] showed that these reactions are of first-order in peroxynitrite and zero-order in phenolic compounds. These authors supposed that there should be two different intermediates responsible for the nitration and hydroxylation of phenols but rejected the most probable proposal that these intermediates should be NO2 and HO. ... [Pg.702]

Interestingly, that the reactions of peroxynitrite with phenols were accelerated in the presence of ferric and cupric ions [112,114]. Until now, there seems no explanation of transition metal effects in these reactions. We just wonder if it is possible that ferric and cupric ions are able to oxidize peroxynitrite ... [Pg.702]

Bimolecular Rate Constants for the Reactions of Peroxynitrite with Biomoleculesa... [Pg.703]

The reaction of peroxynitrite with the biologically ubiquitous C02 is of special interest due to the presence of both compounds in living organisms therefore, we may be confident that this process takes place under in vivo conditions. After the discovery of this reaction in 1995 by Lymar [136], the interaction of peroxynitrite with carbon dioxide and the reactions of the formed adduct nitrosoperoxocarboxylate ONOOCOO has been thoroughly studied. In 1996, Lymar et al. [137] have shown that this adduct is more reactive than peroxynitrite in the reaction with tyrosine, forming similar to peroxynitrite dityrosine and 3-nitrotyrosine. Experimental data were in quantitative agreement with free radical-mediated mechanism yielding tyrosyl and nitric dioxide radicals as intermediates and were inconsistent with electrophilic mechanism. The lifetime of ONOOCOO was estimated as <3 ms, and the rate constant of Reaction (42) k42 = 2 x 103 1 mol 1 s 1. [Pg.705]

Heterolytic mechanism is important in the absence of substrates and homolytic one occurs in the presence of oxidizable biomolecules. Bonini et al. [139] were able to identify C03 radical in the reaction of peroxynitrite with carbon dioxide by ESR spectroscopy. [Pg.706]

Other very convincing evidences for free radical-mediated mechanism of decomposition and reactions of peroxynitrite and nitrosoperoxocarboxylate were demonstrated by Lehnig [140] with the use of CIDNP technique. This technique is based on the effects observed exclusively for the products of free radical reactions their NMR spectra exhibit emission characterizing a radical pathway of their formation. Lehnig has found the enhanced emission in the 15N NMR spectra of N03- formed during the decomposition of both peroxynitrite and nitrosoperoxocarboxylate. This fact indicates that N03- was formed from radical pairs [ N02, H0 ] and [ N02, C03 ]. Emission was also observed in the reaction of both nitrogen compounds with tyrosine supposedly due to the formation of radical pair [ N02, tyrosyl ]. [Pg.706]

Thus the competition between stimulatory and inhibitory effects of NO depends on the competition between two mechanisms the direct interaction of NO with free radicals formed in lipid peroxidation and the conversion of NO into peroxynitrite or other reactive NO metabolites. Based on this suggestion, Freeman and his coworkers [42-44] concluded that the prooxidant and antioxidant properties of nitric oxide depend on the relative concentrations of NO and oxygen. It was supposed that the prooxidant effect of nitric oxide originated from its reaction with dioxygen and superoxide ... [Pg.776]

As mentioned earlier, when NO concentration exceeds that of superoxide, nitric oxide mostly exhibits an inhibitory effect on lipid peroxidation, reacting with lipid peroxyl radicals. These reactions are now well studied [42-44]. The simplest suggestion could be the participation of NO in termination reaction with peroxyl radicals. However, it was found that NO reacts with at least two radicals during inhibition of lipid peroxidation [50]. On these grounds it was proposed that LOONO, a product of the NO recombination with peroxyl radical LOO is rapidly decomposed to LO and N02 and the second NO reacts with LO to form nitroso ester of fatty acid (Reaction (7), Figure 25.1). Alkoxyl radical LO may be transformed into a nitro epoxy compound after rearrangement (Reaction (8)). In addition, LOONO may be hydrolyzed to form fatty acid hydroperoxide (Reaction (6)). Various nitrated lipids can also be formed in the reactions of peroxynitrite and other NO metabolites. [Pg.777]

It has been already pointed out that nitric oxide exhibits antioxidant effect in LDL oxidation at the NO/ 02 ratio 1. Under these conditions the antioxidant effect of NO prevails on the prooxidant effect of peroxynitrite. Although some earlier studies suggested the possibility of NO-mediated LDL oxidation [152,153], these findings were not confirmed [154]. On the other hand, at lower values of N0/02 ratio the formed peroxynitrite becomes an efficient initiator of LDL modification. Beckman et al. [155] suggested that peroxynitrite rapidly reacts with tyrosine residues to form 3-nitrotyrosine. Later on, Leeuwenburgh et al. [156] found that 3-nitrotyrosine was formed in the reaction of peroxynitrite with LDL. The level of 3-nitrotyrosine sharply differed for healthy subjects and patients with cardiovascular diseases LDL isolated from the plasma of healthy subjects contained a very low level of 3-nitrotyrosine (9 + 7 pmol/mol 1 of tyrosine), while LDL isolated from aortic atherosclerotic intima had a 90-fold higher level (840 + 140 pmol/moD1 of tyrosine). It has been proposed that peroxynitrite formed in the human artery wall is able to promote LDL oxidation in vivo. [Pg.795]

Both vitamin E and vitamin C are able to react with peroxynitrite and suppress its toxic effects in biological systems. For example, it has been shown [83] that peroxynitrite efficiently oxidized both mitochondrial and synaptosomal a-tocopherol. Ascorbate protected against peroxynitrite-induced oxidation reactions by the interaction with free radicals formed in these reactions [84]. [Pg.857]


See other pages where Peroxynitrite reaction with is mentioned: [Pg.842]    [Pg.887]    [Pg.936]    [Pg.15]    [Pg.45]    [Pg.64]    [Pg.15]    [Pg.843]    [Pg.888]    [Pg.937]    [Pg.196]    [Pg.41]    [Pg.264]    [Pg.132]    [Pg.256]    [Pg.842]    [Pg.887]    [Pg.936]    [Pg.15]    [Pg.45]    [Pg.64]    [Pg.15]    [Pg.843]    [Pg.888]    [Pg.937]    [Pg.196]    [Pg.41]    [Pg.264]    [Pg.132]    [Pg.256]    [Pg.564]    [Pg.572]    [Pg.26]    [Pg.34]    [Pg.304]    [Pg.13]    [Pg.705]    [Pg.705]    [Pg.705]    [Pg.706]    [Pg.721]    [Pg.796]    [Pg.843]    [Pg.890]   
See also in sourсe #XX -- [ Pg.30 , Pg.31 ]




SEARCH



Peroxynitrites

© 2024 chempedia.info