Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tungsten carbonyl, carbene complexes

E. O. Fischer, and A. Maasbol, Tungsten Carbonyl-carbene Complex, Angew. Chem. Int. Ed. Engl. 3, 580 (1964). [Pg.285]

The direct synthesis of chrysanthemic acid was accomplished by the reaction of a tungsten carbonyl carbene complex 28 with senecio acid 77 [41] (Reaction scheme 18). [Pg.10]

Catalyst. Two types of catalysts were used in the present study. The one is the so-called Ziegler type catalyst composed of a tungsten, molybdenum or rhenium compound (A component) and an organometallic compound (B component). The other type of catalyst is composed of a carbonyl-carbene complex of tungsten and a Lewis acid(24). [Pg.306]

Carbonyl insertions into metallocarbenes have previously been observed for several different metals, including iron48 (see Section VI,C) and manganese.49 Indeed, carbonyl insertions into chrominum and tungsten diphenyl-carbenes have been shown to be viable processes.50 Most importantly, Wulff has isolated51 an 774-vinylketenecobalt (I) complex from the reaction between a cobalt carbene and an acetylene, a transformation that necessitates such a carbonyl insertion (see Section V,B). [Pg.284]

Transition metal complexes which react with diazoalkanes to yield carbene complexes can be catalysts for diazodecomposition (see Section 4.1). In addition to the requirements mentioned above (free coordination site, electrophi-licity), transition metal complexes can catalyze the decomposition of diazoalkanes if the corresponding carbene complexes are capable of transferring the carbene fragment to a substrate with simultaneous regeneration of the original complex. Metal carbonyls of chromium, iron, cobalt, nickel, molybdenum, and tungsten all catalyze the decomposition of diazomethane [493]. Other related catalysts are (CO)5W=C(OMe)Ph [509], [Cp(CO)2Fe(THF)][BF4] [510,511], and (CO)5Cr(COD) [52,512]. These compounds are sufficiently electrophilic to catalyze the decomposition of weakly nucleophilic, acceptor-substituted diazoalkanes. [Pg.91]

Similarly, neither zirconium, tantalum, molybdenum, nor tungsten carbene complexes have been applied extensively by organic chemists for carbonyl olefination [609,727-729], probably because of the difficulty of their preparation and the high price of some of these compounds. These reagents can, however, have appealing chemo- and stereo-selectivity (Table 3.11). [Pg.129]

Bis(adamantylimido) compounds, with monomeric chromium(VI) complexes, 5, 348 Bis(alkene) complexes conjugated, Rh complexes, 7, 214 mononuclear Ru and Os compounds, 6, 401 -02 in Ru and Os half-sandwich rj6-arenes, 6, 538 with tungsten carbonyls and isocyanides, 5, 685 Bis(u-alkenylcyclopentadienyl) complexes, with Ti(II), 4, 254 Bis(alkoxide) nitrogen-donor complexes, with Zr(IV), 4, 805 Bis(alkoxide) titanium alkynes, in cross-coupling, 4, 276 Bis(alkoxo) complexes, with bis-Cp Ti(IV), 4, 588 Bis[alkoxy(alkylamino)carbene]gold complexes, preparation, 2, 288... [Pg.62]

Imidazolium ligands, in Rh complexes, 7, 126 Imidazolium salts iridium binding, 7, 349 in silver(I) carbene synthesis, 2, 206 Imidazol-2-ylidene carbenes, with tungsten carbonyls, 5, 678 (Imidazol-2-ylidene)gold(I) complexes, preparation, 2, 289 Imidazopyridine, in trinuclear Ru and Os clusters, 6, 727 Imidazo[l,2-a]-pyridines, iodo-substituted, in Grignard reagent preparation, 9, 37—38 Imido alkyl complexes, with tantalum, 5, 118—120 Imido-amido half-sandwich compounds, with tantalum, 5,183 /13-Imido clusters, with trinuclear Ru clusters, 6, 733 Imido complexes with bis-Gp Ti, 4, 579 with monoalkyl Ti(IV), 4, 336 with mono-Gp Ti(IV), 4, 419 with Ru half-sandwiches, 6, 519—520 with tantalum, 5, 110 with titanium(IV) dialkyls, 4, 352 with titanocenes, 4, 566 with tungsten... [Pg.125]

More than half a century ago it was observed that Re207 and Mo or W carbonyls immobilized on alumina or silica could catalyze the metathesis of propylene into ethylene and 2-butene, an equilibrium reaction. The reaction can be driven either way and it is 100% atom efficient. The introduction of metathesis-based industrial processes was considerably faster than the elucidation of the mechanistic fundamentals [103, 104]. Indeed the first process, the Phillips triolefin process (Scheme 5.55) that was used to convert excess propylene into ethylene and 2-butene, was shut down in 1972, one year after Chauvin proposed the mechanism (Scheme 5.54) that earned him the Nobel prize [105]. Starting with a metal carbene species as active catalyst a metallocyclobutane has to be formed. The Fischer-type metal carbenes known at the time did not catalyze the metathesis reaction but further evidence supporting the Chauvin mechanism was published. Once the Schrock-type metal carbenes became known this changed. In 1980 Schrock and coworkers reported tungsten carbene complexes... [Pg.258]

Pentacarbonyl[methyl(methoxy)carbene]tungsten and other carbene complexes containing a hydrogen atom a to the carbene carbon atom react with butyllithium (but also with OMe" ) at low T to generate carbene anions. The moderate reactivity of these carbene anions toward carbon nucleophiles, including epoxides, aldehydes, a-bromoesters and a, -unsaturated carbonyl compounds can be used to prepare carbene complexes inaccessible via other synthetic routes (see refs. 7-9). The anion generated by treatment of (CO)5Cr[C(OMe)Me] with BuLi in THF at — 78°C is isolated as the air-stable bis(triphenylphosphane)iminium salt . [Pg.111]

Tungsten-Re and W-Ir binuclear carbene complexes as well as cluster carbene complexes are prepared via acylation-alkylation of the corresponding carbonyl compounds. [Pg.117]

In addition to cationic cyclizations, other conditions for the cyclization of polyenes and of ene-ynes to steroids have been investigated. Oxidative free-radical cyclizations of polyenes produce steroid nuclei with exquisite stereocontrol. For example, treatment of (259) and (260) with Mn(III) and Cu(II) afford the D-homo-5a-androstane-3-ones (261) and (262), respectively, in approximately 30% yield. In this cyclization, seven asymmetric centers are established in one chemical step (226,227). Another intramolecular cyclization reaction of iodo-ene poly-ynes was reported using a carbopaUadation cascade terminated by carbonylation. This carbometalation—carbonylation cascade using CO at 111 kPa (1.1 atm) at 70°C converted an acycHc iodo—tetra-yne (263) to a D-homo-steroid nucleus (264) [162878-44-6] in approximately 80% yield in one chemical step (228). Intramolecular aimulations between two alkynes and a chromium or tungsten carbene complex have been examined for the formation of a variety of different fiised-ring systems. A tandem Diels-Alder—two-alkyne annulation of a triynylcarbene complex demonstrated the feasibiHty of this strategy for the synthesis of steroid nuclei. Complex (265) was prepared in two steps from commercially available materials. Treatment of (265) with Danishefsky s diene in CH CN at room temperature under an atmosphere of carbon monoxide (101.3 kPa = 1 atm), followed by heating the reaction mixture to 110°C, provided (266) in 62% yield (TBS = tert — butyldimethylsilyl). In a second experiment, a sequential Diels-Alder—two-alkyne annulation of triynylcarbene complex (267) afforded a nonaromatic steroid nucleus (269) in approximately 50% overall yield from the acycHc precursors (229). [Pg.442]

Diethyl(ethylene)tellurourea formed complexes with chromium, molybdenum, tungsten, and manganese carbonyls, in which the tellurium is coordinated to the transition metal The solid complexes are moderately stable in air. They do not decompose when stored in the dark at 20° under an inert atmosphere. A toluene solution of the chromium complex at 20° deposited tellurium forming the chromium-carbene complex. ... [Pg.520]

The anion 117 prepared by deprotonation of the carbene complex [Cr(CO)s C(OEt)CH2CHS(CH2)3S ] (116) also rearranges spontaneously by carbonyl insertion to give a neutral six-membered chelate (118) after alkylation. The analogous tungsten carbene complex affords stereoselec-tively a vinylcarbene complex (119) by opening of the 1,3-dithiane ring (705). Reaction of 118 with methyl hydrazine produces mainly an NMe- or... [Pg.31]

Another example of a stoichiometric carbonyl-olefination reaction facilitated by a reagent which may be assumed to generate an intermediate tungsten carbene complex is shown in eqns. (7) and (8). The ketone can be added as soon as methane evolution has subsided (Kaufftnann 1986). [Pg.85]


See other pages where Tungsten carbonyl, carbene complexes is mentioned: [Pg.403]    [Pg.194]    [Pg.403]    [Pg.194]    [Pg.368]    [Pg.442]    [Pg.196]    [Pg.127]    [Pg.74]    [Pg.528]    [Pg.583]    [Pg.48]    [Pg.90]    [Pg.145]    [Pg.168]    [Pg.25]    [Pg.289]    [Pg.528]    [Pg.712]    [Pg.148]    [Pg.205]    [Pg.107]    [Pg.289]    [Pg.1366]    [Pg.74]    [Pg.125]    [Pg.43]    [Pg.95]    [Pg.205]    [Pg.442]    [Pg.207]    [Pg.211]    [Pg.296]   


SEARCH



Tungsten carbene

Tungsten carbene complexes

Tungsten carbenes

Tungsten carbonyl complex

Tungsten carbonyls

Tungsten complexes, carbonylation

© 2024 chempedia.info