Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tryptophan—continued

In 1989, a large outbreak of eosinophilia-myalgia syndrome in the United States was associated with the use of L-tryptophan supplements. Supplement sales were immediately restricted in the US leading to an eventual world-wide ban in 1991 even though L-tryptophan continued to be sold as a feed additive in the US and was added to baby formula. The outbreak was eventually traced to product from a single Japanese manufacturer. Despite considerable effort, no contaminant was found nor did other hypotheses to explain the outbreak bear fruit. Other theories whereby L-Tryptophan itself or its metabolites could be the cause also are unproven. There remains no conclusive link between L-tiyptophan and EMS. The FDA lifted, with some caveats, the ban on sales of dietary L-tryptophan in 2001 although importation stiU is restricted. It is again available in the US over-the-counter... [Pg.39]

Water-soluble globular proteins usually have an interior composed almost entirely of non polar, hydrophobic amino acids such as phenylalanine, tryptophan, valine and leucine witl polar and charged amino acids such as lysine and arginine located on the surface of thi molecule. This packing of hydrophobic residues is a consequence of the hydrophobic effeci which is the most important factor that contributes to protein stability. The molecula basis for the hydrophobic effect continues to be the subject of some debate but is general considered to be entropic in origin. Moreover, it is the entropy change of the solvent that i... [Pg.531]

Among the many chiral Lewis acid catalysts described so far, not many practical catalysts meet these criteria. For a,/ -unsaturated aldehydes, Corey s tryptophan-derived borane catalyst 4, and Yamamoto s CBA and BLA catalysts 3, 7, and 8 are excellent. Narasaka s chiral titanium catalyst 31 and Evans s chiral copper catalyst 24 are outstanding chiral Lewis acid catalysts of the reaction of 3-alkenoyl-l,2-oxazolidin-2-one as dienophile. These chiral Lewis acid catalysts have wide scope and generality compared with the others, as shown in their application to natural product syntheses. They are, however, still not perfect catalysts. We need to continue the endeavor to seek better catalysts which are more reactive, more selective, and have wider applicability. [Pg.48]

Various minor hematological effects have been noted in animals. Rats exposed to 50-800 ppm of trichloroethylene continuously for 48 or 240 hours showed time- and dose-related depression of delta-aminolevulinate dehydratase activity in liver, bone marrow, and erythrocytes (Fujita et al. 1984 Koizumi et al. 1984). Related effects included increased delta-aminolevulinic acid (ALA) synthetase activity, reduced heme saturation of tryptophan pyrrolase and reduced cytochrome P-450 levels in the liver and increased urinary excretion of... [Pg.41]

Dissolve 27 g 4,5, or 6 methoxy (or ethoxy, methyl, etc.) tryptophan in 50 ml freshly distilled acetaldehyde and 1 L water and heat at 50° in loosely stoppered flask three hours. Heat on steam bath five hours to remove acetaldehyde, then add 5 L water and heat to boiling. Add 1.2 L 10% K dichromate and 240 ml glacial acetic acid and continue heating three minutes. Cool and add excess Na sulfite take pH to 8 with Na carbonate Extract with 5 L ether and dry, evaporate in vacuum (or simply evaporate in vacuum after cooling) to get the harmaline isomer. [Pg.110]

A large and diverse group of proteins, including enzymes, cytoskeleton, contractile proteins, and receptors, have been shown to be modified by calpains. Thus, a number of enzymes such as tyrosine hydrolase, tryptophan hydrolase, transglutaminase, protein kinase C, and membrane Ca2+-ATPase are activated by calpain proteolysis [38]. Several receptor proteins, in particular receptors for steroid hormones, growth factors, and adrenaline, are modulated by calpains, which participate also in platelet activation, cell fusion, and mitosis [39], Although the physiological roles of calpains continue to be un-... [Pg.40]

The reference 28 authors continue to detail experimental observations that place voltage sensor helices in positions within the membrane. Miller and coworkers conducted site-directed mutagenesis for all residues of helices Sl-S3. ° In these experiments, tryptophan (trp) residues were substituted for each amino acid in turn to determine which residues would be trp-tolerant. These experiments confirmed a-helical conformations for SI and S2 and showed that K+ channel function was altered when trp residues were placed in some (labeled non-trp-tolerant), but not all, positions. The same treatment for helix S3 yielded complex results. At S3 s N-terminal end the distribution of trp-tolerant positions were consistent with an a-helical structure, however, this was not the case at S3 s C-terminal end. Other tests indicated that S3 might be helical for its entire length and that the N-terminal end interfaces with both lipid and protein while the C-terminal end interfaces with water. Comparisons of trp-tolerant or trp-intolerant residues over several different Kv channel... [Pg.222]

Despite the known propensity for racemization, base-catalyzed cyclization continues to be used occasionally. Thus a series of cyclodipeptides derived from 1-methyl-L- and D-tryptophans and S-methyl-L-and D-cysteine have been prepared by ammonia-catalyzed cyclization (87JMC1706), (Scheme 1). [Pg.190]

We must be free to eat this plant, and smell that flower, as we choose to. To deny us this right, is to deny us a simple, and basic freedom that is our Constitutional identity. If I want to continue to eat bananas and drink milk, I will do so, and get off of my back. If I want to consume tryptophan because I feel it brings me closer to God and Jesus, or makes me sleep better, I will consume tryptophan. You, the empowered authority, will not tell me not to. As was so eloquently expressed in Leonard Bernstein s West Side Story, when the hero group of heroes came up against the authority group of authorities, they said, "Hey, Officer Cronsky, fuck you."... [Pg.258]

Regulatory sequence 1 is crucial for a tryptophan-sensitive mechanism that determines whether sequence 3 pairs with sequence 2 (allowing transcription to continue) or with sequence 4 (attenuating transcription). Formation of the attenuator stem-and-loop structure depends on events that occur during translation of regulatory sequence 1, which encodes a leader peptide (so called because it is encoded by the leader region of the mRNA) of 14 amino acids, two of which are Trp residues. The leader peptide has no other known cellular function its synthesis is simply an operon regulatory device. [Pg.1095]

When tryptophan levels are high, the ribosome quickly translates sequence 1 (open reading frame encoding leader peptide) and blocks sequence 2 before sequence 3 is transcribed. Continued transcription leads to attenuation at the terminator-like attenuator structure formed by sequences 3 and 4. [Pg.1096]

Effect of mRNA and Protein Stability on Regulation E. coli cells are growing in a medium with glucose as the sole carbon source. Tryptophan is suddenly added. The cells continue to grow, and divide every 30 min. Describe (qualitatively) how the amount of tryptophan synthase activity in the cells changes with time under the following conditions ... [Pg.1118]

Figure 16-21 (A) Scheme showing the diiron center of the R2 subunit of E. coli ribonucleotide reductase. Included are the side chains of tyrosine 122, which loses an electron to form a radical, and of histidine 118, aspartate 237, and tryptophan 48. These side chains provide a pathway for radical transfer to the R1 subunit where the chain continues to tyrosines 738 and 737 and cysteine 429.354a c From Andersson et al.35ic (B) Schematic drawing of the active site region of the E. coli class IH ribonucleotide reductase with a plausible position for a model-built substrate molecule. Redrawn from Lenz and Giese373 with permission. Figure 16-21 (A) Scheme showing the diiron center of the R2 subunit of E. coli ribonucleotide reductase. Included are the side chains of tyrosine 122, which loses an electron to form a radical, and of histidine 118, aspartate 237, and tryptophan 48. These side chains provide a pathway for radical transfer to the R1 subunit where the chain continues to tyrosines 738 and 737 and cysteine 429.354a c From Andersson et al.35ic (B) Schematic drawing of the active site region of the E. coli class IH ribonucleotide reductase with a plausible position for a model-built substrate molecule. Redrawn from Lenz and Giese373 with permission.
Fig. 2. Attenuation of the trp operon. (a) When tryptophan is plentiful, sequences 3 and 4 base-pair to form a 3 4 structure that stops transcription (b) when tryptophan is in short supply, the ribosome stalls at the trp codons in sequence 1, leaving sequence 2 available to interact with sequence 3. Thus a 3 4 transcription terminator structure cannot form and transcription continues. Fig. 2. Attenuation of the trp operon. (a) When tryptophan is plentiful, sequences 3 and 4 base-pair to form a 3 4 structure that stops transcription (b) when tryptophan is in short supply, the ribosome stalls at the trp codons in sequence 1, leaving sequence 2 available to interact with sequence 3. Thus a 3 4 transcription terminator structure cannot form and transcription continues.
The potential for transition metal complexes to provide new reactivity patterns continues to be explored by the preparation of complexes and the study of their reactivity patterns. The aminoalkyl substituents of gramine, tryptamine and methyl tryptophanate promoted metalation at C2 of the indole ring by Pt(DMSO)2Cl2. The crystal structure of the gramine product was determined. [Pg.115]


See other pages where Tryptophan—continued is mentioned: [Pg.219]    [Pg.34]    [Pg.219]    [Pg.34]    [Pg.551]    [Pg.1023]    [Pg.145]    [Pg.135]    [Pg.890]    [Pg.117]    [Pg.212]    [Pg.242]    [Pg.321]    [Pg.87]    [Pg.350]    [Pg.414]    [Pg.211]    [Pg.58]    [Pg.84]    [Pg.15]    [Pg.139]    [Pg.31]    [Pg.256]    [Pg.1616]    [Pg.1617]    [Pg.35]    [Pg.757]    [Pg.152]    [Pg.174]    [Pg.308]    [Pg.277]    [Pg.118]    [Pg.177]    [Pg.180]    [Pg.121]    [Pg.331]    [Pg.99]   


SEARCH



Tryptophan—continued oxidation

© 2024 chempedia.info