Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tris complexes catalytic reactions

A stoichiometric amount of promoter, at least, is required for the reaction to proceed, leading to an environmentally hostile process with gaseous effluents and mineral wastes. With some metal salts, however, an increase in reaction temperature sets them free from their complex with the ketone, and a true catalytic reaction becomes possible [73] this is observed for iron(III) chloride [74] and some metal tri-flates [72, 75], including their use under the action of MW heating [76]. [Pg.236]

Thus we see that environmental modeling involves solving transient mass-balance equations with appropriate flow patterns and kinetics to predict the concentrations of various species versus time for specific emission patterns. The reaction chemistry and flow patterns of these systems are sufficiently complex that we must use approximate methods and use several models to try to bound the possible range of observed responses. For example, the chemical reactions consist of many homogeneous and catalytic reactions, photoassisted reactions, and adsorption and desorption on surfaces of hquids and sohds. Is global warming real [Minnesotans hope so.] How much of smog and ozone depletion are manmade [There is considerable debate on this issue.]... [Pg.355]

Therefore it seems reasonable to assume that cyanation of aryl halides involves two fundamental processes oxidative addition of the tris(triphenylphosphine)nickel complex on the aromatic halide (Reaction 2) and cyanation of the arylnickel(II) complex 1 (Reaction 8). A further proof of the validity of this scheme is that both Ni[P(C6H5)3]3 and arylnickel (II) complexes 1 have an equal catalytic activity, these latter being intermediates of the catalytic process. Recent studies (22) on the influence of substituents on the aromatic halide in the oxidative addition reaction with Ni[P(C6H5)3]3 have given the results shown in Figure 4. [Pg.277]

From this example it is clear that the selectivity for (a) dehydrogenation, (b) isomerization, and (c) cracking is likely to be related to the relative concentrations of mono-, di-, and tri-adsorbed complexes, etc. More generally, the selectivity of a catalytic reaction will depend on the relative chance for a molecule adsorbed on -surface atoms either to desorb or become adsorbed on (n + 1) surface atoms. This idea easily permits us to understand that dilution of an element A, capable of forming chemisorption bonds with a given molecule, with an inert element B will lower the ratio of poly- to monoadsorbed molecules and have an effect on catalytic selectivity. We will call this concept the primary ensemble effect. [Pg.101]

The mechanism proposed for aromatic C-H borylation of aromatic compounds 1 by B2pin2 3 catalyzed by the Ir-bpy complex is depicted in Scheme 3 [6-9]. A tris(boryl)Ir (III) species [5, 6, 11] 6 generated by reaction of an Ir(I) complex 5 with 3 is chemically and kinetically suitable to be an intermediate in the catalytic process. Oxidative addition of 1 to 6 yields an Ir(V) species 7 that reductively eliminates an aromatic boron compound 4 to give a bis(boryl)Ir(III) hydride complex 8. Oxidative addition of 3 to 8 can be followed by reductive elimination of HBpin 2 from 9 to regenerate 6. 2 also participates in the catalytic cycle via a sequence of oxidative addition to 8 and reductive elimination of H2 from an 18-electron Ir(V) intermediate 10. Borylation of 1 by 2 may occur after consumption of 3, because the catalytic reaction is a two-step process - fast borylation by 3 then slow borylation by 2 [6],... [Pg.128]

For a catalytic reaction to be feasible, the product should be readily released from the metal complex in order that the cycle may continue. In other words, the substrate should coordinate more strongly than the product to the metal catalyst. A few catalytic oxidations are known. Thus, autoxidation of tri-phenylphosphine and terf-butyl isocyanide is catalyzed by several Group VIII metal-dioxygen complexes,487 490 e.g.,... [Pg.355]

In the previous chapters we discussed alkene-based homogeneous catalytic reactions such as hydrocarboxylation, hydroformylation, and polymerization. In this chapter we discuss a number of other homogeneous catalytic reactions where an alkene is one of the basic raw materials. The reactions that fall under this category are many. Some of the industrially important ones are isomerization, hydrogenation, di-, tri-, and oligomerization, metathesis, hydrocyana-tion, hydrosilylation, C-C coupling, and cyclopropanation. We have encountered most of the basic mechanistic steps involved in these reactions before. Insertions, carbenes, metallocycles, and p -allyl complexes are especially important for some of the reactions that we are about to discuss. [Pg.133]

Many of the complexes discussed in the previous sections are catalysts for alkyne oligomerization. In fact, alkyne dimerization and trimerization (see Cyclodimerization -tri-merization Reactions) at a cobalt center is recognized as one of the most synthetically useful catalytic reactions mediated by a homogeneous transition metal complex. The cobalt complexes most useful and extensively studied are CpCoL2, where L is CO, alkene, diene, or phosphine. The complex types... [Pg.864]

Our aim in this section has been to prove the existence of a surface CO-oxygen complex, to establish its heat of formation and then to assess the evidence for its participation as the reaction intermediate in CO oxidation. The application of arguments based on isolated chemisorption experiments in discussing the mechanism of a delicately balanced catalytic reaction is always a calculated risk, but we have tried to show here that the method is most powerful if the behavior of all the various possible combinations of preadsorption and dosing can be fitted to a consistent picture. [Pg.21]

Sorption and desorption are the most simple rate processes in zeolite-gas systems. Their kinetics must be considered before one tries to understand the more complex phenomena of catalytic reaction rates. Sorption alone is already a composite process, even if represented in terms of very simple molecular models. Two extreme cases can be visualized. [Pg.300]

Sulfonated triphenylphosphine [TPPTS (triphenylphosphine, m-trisulfonated) tri(m-sulfophenyl)phosphine] (II-l) and monosulfonated triphenylphosphine [TP-PMS (triphenylphosphine, monosulfonated) 3-(diphenylphosphino)benzenesul-fonic acid] (II-2) are commercially available ligands and their sodium salts are water-soluble [15]. The Na salt of the ligand TPPTS is very soluble and may be too soluble in water, hence moderately soluble TPPMS is preferred. Another water-soluble phosphine is 2-(diphenylphosphinoethyl)trimethyl ammonium halide (II-11) [16]. A number of other water-soluble phosphines are now known (Table 1.2). Pd complexes, coordinated by these phosphines, are soluble in water, and Pd-catalyzed reactions can be carried out in water, which is said to have an accelerating effect in some catalytic reactions. [Pg.4]


See other pages where Tris complexes catalytic reactions is mentioned: [Pg.312]    [Pg.298]    [Pg.4]    [Pg.51]    [Pg.110]    [Pg.1161]    [Pg.20]    [Pg.262]    [Pg.2]    [Pg.388]    [Pg.55]    [Pg.244]    [Pg.149]    [Pg.8]    [Pg.9]    [Pg.261]    [Pg.149]    [Pg.210]    [Pg.225]    [Pg.299]    [Pg.67]    [Pg.950]    [Pg.1103]    [Pg.59]    [Pg.218]    [Pg.37]    [Pg.129]    [Pg.297]    [Pg.364]    [Pg.91]    [Pg.108]    [Pg.716]    [Pg.22]    [Pg.65]    [Pg.300]    [Pg.1078]    [Pg.1636]    [Pg.31]   
See also in sourсe #XX -- [ Pg.182 , Pg.183 , Pg.184 , Pg.185 , Pg.186 ]




SEARCH



Complex , catalytic

Tri complexes

Tris complexes

© 2024 chempedia.info