Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tris benzene preparation

N-Benzoylimidazole in benzene added dropwise to a soln. of 2 moles of tri-phenylphosphinemethylene prepared by treating triphenylmethylphosphonium... [Pg.444]

Why does this reaction not work well First, as we have seen in substitution, elimination, and addition reactions, carbocations tend to rearrange. This could not happen with a methyl cation, but it happens readily with other primary carbocations. For example, if we try to prepare pro-pylbenzene by the reaction of benzene with 1-chloropropane and aluminum chloride, the main product is rso-propylbenzene. The primary cation is formed initially, but it rapidly rearranges by hydride migration to give the more stable secondary cation (Figure 12.11). [Pg.502]

Monosubstitution of acetylene itself is not easy. Therefore, trimethylsilyl-acetylene (297)[ 202-206] is used as a protected acetylene. The coupling reaction of trimethylsilylacetylene (297) proceeds most efficiently in piperidine as a solvent[207]. After the coupling, the silyl group is removed by treatment with fluoride anion. Hexabromobenzene undergoes complete hexasubstitution with trimethylsilylacetylene to form hexaethynylbenzene (298) after desilylation in total yield of 28% for the six reactions[208,209]. The product was converted into tris(benzocyclobutadieno)benzene (299). Similarly, hexabutadiynylben-zene was prepared[210j. [Pg.170]

The history of iaclusion compounds (1,2) dates back to 1823 when Michael Faraday reported the preparation of the clathrate hydrate of chlorine. Other early observations iaclude the preparation of graphite iatercalates ia 1841, the P-hydroquiaone H2S clathrate ia 1849, the choleic acids ia 1885, the cyclodexthn iaclusion compounds ia 1891, and the Hofmann s clathrate ia 1897. Later milestones of the development of iaclusion compounds refer to the tri-(9-thymotide benzene iaclusion compound ia 1914, pheaol clathrates ia 1935, and urea adducts ia 1940. [Pg.61]

Bromine monofluoride [13863-59-7], BrF, can be prepared by the direct reaction of Br2 and F2, but because it readily disproportionates it has never been prepared in pure form (57). However, BrF can be prepared in situ by the reaction of Br2 with AgF in benzene (58) or by the reaction of A/-bromoacetamide and HF in ether (59). BrF adds to simple alkenes at room temperature to give products of trans-addition. Bromine trifluoride [7787-71-5], BrF, can be formed from gaseous fluorine and Hquid bromine (60). Bromine pentafluoride [7789-30-2], BrF, is formed from the reaction of BrF vapor with gaseous fluorine at 200°C (60). The tri- and pentafluorides are commercially available. As strong fluorinating agents they are useful in... [Pg.292]

Reactions of acetylene and iron carbonyls can yield benzene derivatives, quinones, cyclopentadienes, and a variety of heterocycHc compounds. The cyclization reaction is useful for preparing substituted benzenes. The reaction of / fZ-butylacetylene in the presence of Co2(CO)g as the catalyst yields l,2,4-tri-/ f2 butylbenzene (142). The reaction of Fe(CO) and diphenylacetylene yields no less than seven different species. A cyclobutadiene derivative [31811 -56-0] is the most important (143—145). [Pg.70]

Amorphous (most likely atactic) 3,4-polyisoprene of 94—100% 3,4-microstmcture was prepared with a (C2H 3A1—Ti(0—/ -C Hy) catalyst (11). Crystalline 3,4-polyisoprene containing about 70% 3,4-units and about 30% i7j -l,4-microstmcture was prepared using a catalyst derived from iron acetyl acetonate, trialkyl aluminum, and an amine in benzene (37). However, this polyisoprene contained gel and was obtained in poor yield. Essentially gel-free crystallizable 3,4-polyisoprene of 70—85% 3,4-microstmcture with the remainder being cis-1,4 microstmcture was prepared in conversions of greater than 95% with a water-modified tri alkyl aluminum, ferric acetyl acetonate, and 1,10-phenanthroline catalyst (38). The 3,4-polyisoprene is stereoregular and beheved to be syndiotactic or isotactic. [Pg.4]

The bicyclo[2.2.0]hexa-2,5-diene ring system is a valence isomer of the benzene ring and is often referred to as Dewar benzene. After many attempts to prepare Dewar benzene derivatives failed, a pessimistic opinion existed that all such efforts would be finitless because Dewar benzene would be so unstable as to immediately revert to benzene. Then, in 1962, van Tamelen and Pappas isolated a stable Dewar benzene derivative by photolysis of 1,2,4-tri(/-butyl)benzene. ... [Pg.614]

Alkynes substituted with one or two trifluoromethyl groups are also highly reactive dienophiles [9] Indeed, hexafluoro-2-butyne is used increasingly as a definitive acetylenic dienophile in "difficult Diels-Alder reactions. It was used, for example, to prepare novel inside-outside bicycloalkanes via its reaction with cir,trnns -l,3-undecadiene [74] (equation 67) and to do a tandem Diels-Alder reaction with a l,l-bis(pyrrole)methane [75] (equation 68) Indeed, its reactions with pyrrole derivatives and furan have been used in the syntheses of 3,4-bis(tri-fluoromethyl)pyrrole [76, 77] (equation 69) and ],4-bis(trifluoromethyl)benzene-2,3-oxide [78] (equation 70), respectively. [Pg.819]

A second reaction which is very often used for the preparation of phthalonitriles, although the yields are usually not reproducible, is the Rosenmund-von Braun reaction (see Houben-Weyl, Vol. E5, p 1460).106 107 Herein, a benzene derivative with a 1,2-dibromidc or 1,2-dich-loride unit is treated with copper(I) cyanide in dimethylformamidc or pyridine. During this reaction the formation of the respective copper phthalocyanine often occurs. This can be used as an easy procedure for the exclusive synthesis of copper phthalocyanines (see Section 2.1.1.7.),1 os-109 but can also lead to problems if the phthalonitrile is required as the product. For example, if l,2-dibromo-4-trifluoromethyl-benzene is subjected to a Rosenmund-von Braun reaction no 4-trifluoromethylphthalonitrile but only copper tetra(tri-fluoromethyljphthalocyanine is isolated.110... [Pg.725]

To prepare multifunctionalized symmetric organosilicon compounds by the polyalkylation of benzene. (2-chloroethyi)trichlorosilane and (3-chloropropyl)tri-chlorosilane were reacted with benzene. Polyalkylations of benzene with (2-chloroethyl)silane and (3-chloropropyl)silane were carried out in the presence of aluminum chloride catalyst at a reaction temperature of 80 C. The reaction of benzene with excess (2-chloroethyI )trichlorosilanes afforded pcralkylated product, hexakis(2-(trichlorosilyl)ethyl)benzene in good yield (70%). ... [Pg.167]

Experimental Preparation of Spironaphthooxazine 33 (N-Bu). Tri-ethylamine (3.54 g, 35 mmol) was added to a suspension of 2,3,3-trimethyl-iV-butylindolinium iodide (12.0 g, 35 mmol) and o-nitrosonaphthol (6.1 g, 35 mmol) in EtOH (100 ml) under stirring. The mixture was refluxed for 2 h, cooled, and evaporated under reduced pressure. The residue was chromatographed on silica gel with benzene as an eluent, and then recrystallized from methanol to give spiro(Af-butylindolinonaphthooxazine) 33 (6.6 g, yield 51%). [Pg.32]

Solvent Effects in the Sn Spectra of Poly(TBTM/MMA). Samples of poly(MMA/TBTM) synthesized by the free-radical copolymerization of the appropriate monomers were solutions in benzene with approximately 33% solids (weight to volume). The particular formulation chosen as representative of the class contained a 1 1 ratio of pendant methyl to tri-n-butyltin groups. In preparing the dry polymer, the benzene was removed in vacuo with nominally 5% by weight residual solvent. [Pg.486]

The zinc complex of 1,1,1,5,5,5-hexafluoroacetylacetonate forms coordination polymers in reaction with either 2,5-bis(4-ethynylpyridyl)furan or l,2-bis(4-ethynylpyridyl)benzene. The X-ray crystal structures demonstrate an isotactic helical structure for the former and a syndio-tactic structure for the latter in the solid state. Low-temperature 1H and 19F NMR studies gave information on the solution structures of oligomers. Chiral polymers were prepared from L2Zn where L = 3-((trifluoromethyl)hydroxymethylene)-(+)-camphorate. Reaction with 2,5-bis(4-ethy-nylpyridyl)furan gave a linear zigzag structure and reaction with tris(4-pyridyl)methanol a homo-chiral helical polymer.479... [Pg.1187]

Crystals of [Tc(tu)6]Cl3 or [TcCl(tu)5]Cl2 are often employed for the synthesis of technetium(III) complexes. However, since the direct reduction of pertechnetate with excess thiourea in a hydrochloric acid solution yields [Tc(tu)6]3+ in high yield [37], direct use of the aqueous solution of the thiourea complex would be preferable for the synthesis of the technetium(III) complex without isolation of the crystals of the thiourea complex. In fact, technetium could be extracted from the aqueous solution of the Tc-thiourea complex with acetylacetone-benzene solution in two steps [38]. More than 95% extraction of technetium was attained using the following procedure [39] First a pertechnetate solution was added to a 0.5 M thiourea solution in 1 M hydrochloric acid. The solution turned red-orange as the Tc(III)-thiourea complex formed. Next, a benzene solution containing a suitable concentration of acetylacetone was added. After the mixture was shaken for a sufficient time (preliminary extraction), the pH of the aqueous phase was adjusted to 4.3 and the aqueous solution was shaken with a freshly prepared acetylacetonebenzene solution (main extraction). The extraction behavior of the technetium complex is shown in Fig. 6. The chemical species extracted into the organic phase seemed to differ from tris(acetylacetonato)technetium(III). Kinetic analysis of the two step extraction mechanism showed that the formation of 4,6-dimethylpyrimidine-... [Pg.268]

In our earlier efforts to synthesize dendritic amphiphiles, we described a triden-dron (43) which was prepared by a two-step (alkylation-amidation or triester-tris) reaction sequence applied to l,3,5-tris(bromomethyl)benzene [117]. TEM and light scattering experiments suggested that 43 aggregated by stacking of its hydrophilic exterior into a spherical array of ca. 20 nm (diameter) reminiscent of globular micelles. [Pg.54]


See other pages where Tris benzene preparation is mentioned: [Pg.144]    [Pg.40]    [Pg.144]    [Pg.1267]    [Pg.227]    [Pg.9]    [Pg.348]    [Pg.383]    [Pg.235]    [Pg.40]    [Pg.280]    [Pg.243]    [Pg.265]    [Pg.684]    [Pg.164]    [Pg.47]    [Pg.268]    [Pg.154]    [Pg.245]    [Pg.189]    [Pg.189]    [Pg.190]    [Pg.806]    [Pg.1538]    [Pg.69]    [Pg.100]    [Pg.218]    [Pg.137]    [Pg.314]    [Pg.81]    [Pg.677]    [Pg.774]    [Pg.133]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



1.3.5- Tris- benzen

4- benzene, preparation

Tris benzenes

Tris preparation

© 2024 chempedia.info