Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triphenylphosphine nickel complexes with

Therefore it seems reasonable to assume that cyanation of aryl halides involves two fundamental processes oxidative addition of the tris(triphenylphosphine)nickel complex on the aromatic halide (Reaction 2) and cyanation of the arylnickel(II) complex 1 (Reaction 8). A further proof of the validity of this scheme is that both Ni[P(C6H5)3]3 and arylnickel (II) complexes 1 have an equal catalytic activity, these latter being intermediates of the catalytic process. Recent studies (22) on the influence of substituents on the aromatic halide in the oxidative addition reaction with Ni[P(C6H5)3]3 have given the results shown in Figure 4. [Pg.277]

Well-defined 1 1 and 1 2 adducts with triphenylphosphine are formed with ease 42,45, 46). The yellow 1 1 adduct is more stable than bis(acrylo-nitrile)-nickel itself (dec. p. 185° C) and represents one of the first examples of a nickel complex with the coordination number three. The 2 1 adduct is monomeric in benzene and has a dipole moment of 6 Debye units (46). Unstable bis(pyridine) adducts were also isolated, but were found to decompose at room temperature, depositing metallic nickel (46). [Pg.14]

Nickel salts form coordination compounds with many ligands. Dibromobis(tri- -butylphosphine)nickel(Il) [15242-92-9], [( -C4H2)3P]2NiBr2, dicyanoammineaquanickel(11), Ni(NH3)(H20)(CN)2, and bromonitrosobis(triphenylphosphine)nickel(Il) [14586-72-2], are complexes used for syntheses in preparative organonickel chemistry. [Pg.12]

Pyridazines form complexes with iodine, iodine monochloride, bromine, nickel(II) ethyl xanthate, iron carbonyls, iron carbonyl and triphenylphosphine, boron trihalides, silver salts, mercury(I) salts, iridium and ruthenium salts, chromium carbonyl and transition metals, and pentammine complexes of osmium(II) and osmium(III) (79ACS(A)125). Pyridazine N- oxide and its methyl and phenyl substituted derivatives form copper complexes (78TL1979). [Pg.37]

A complex reaction takes place when dichlorobis(triphenylphosphine)-nickel (5) is treated with excess methylmagnesium bromide in ether. Detectable amounts of benzene, toluene, and biphenyl are formed, together with mixed phosphines. Nickel appears to be necessary for the substitution reaction since triphenylphosphine alone does not react with the Grignard reagent. [Pg.2]

The force constants of the Ni—P bond in P " nickel carbonyl complexes increase in the order MeaP < PHg < P(OMe)a < PFs. This order is different from that of the donor-acceptor character, as estimated from uco-The lengthening of the P—O bond of triphenylphosphine oxide upon complexation with uranium oxide has been estimated by i.r. spectroscopy. However, A -ray diffraction shows little difference in the P-O bond lengths (see Section 7). Some SCF-MO calculations on the donor-acceptor properties of McaPO and H3PO have been reported. [Pg.275]

In addition to the successful reductive carbonylation systems utilizing the rhodium or palladium catalysts described above, a nonnoble metal system has been developed (27). When methyl acetate or dimethyl ether was treated with carbon monoxide and hydrogen in the presence of an iodide compound, a trivalent phosphorous or nitrogen promoter, and a nickel-molybdenum or nickel-tungsten catalyst, EDA was formed. The catalytst is generated in the reaction mixture by addition of appropriate metallic complexes, such as 5 1 combination of bis(triphenylphosphine)-nickel dicarbonyl to molybdenum carbonyl. These same catalyst systems have proven effective as a rhodium replacement in methyl acetate carbonylations (28). Though the rates of EDA formation are slower than with the noble metals, the major advantage is the relative inexpense of catalytic materials. Chemistry virtually identical to noble-metal catalysis probably occurs since reaction profiles are very similar by products include acetic anhydride, acetaldehyde, and methane, with ethanol in trace quantities. [Pg.147]

Both of the above approaches employed a metal ion as a template about which the corrin cyclization was performed, but the nickel or cobalt ions could not subsequently be removed. In order to obtain metal-free corrins, a new route was therefore devised (67AG865) which employed the novel principle of sulfide contraction (Scheme 22). Thus the sodium salt of the precorrin (284) (Scheme 23) was transformed into the thiolactam (285), and loose complexation with zinc(II) ions caused cyclization to give (286), which was treated with benzoyl peroxide and acid to give the ring-expanded compound (287). Contraction with TFA/DMF gave the corrins (288) and (289), and the major of these (289) was desulfurized with triphenylphosphine and acid to give (288). Finally, demetallation with TFA gave the required metal-free corrin (290), a source for a whole variety of metal derivatives. [Pg.424]

The nickel-catalyzed transformation of aromatic halides into the corresponding nitriles by reaction with cyanide ions is reported. Both tris(triarylphosphine)nickel(0) complexes and tY2ins-chloro( aryl )bis( triarylphosphine )nickel(II) complexes catalyze the reaction. The influence of solvents, organophos-phines, and substituents on the aromatic nucleus on catalytic cyanation is studied. A mechanism of the catalytic process is suggested based on the study of stoichiometric cyanation of ti3ins-chloro(aryl)bis(triphenylphosphine)nickel-(II) complexes with NaCN and the oxidative addition reaction of Ni[P(C6H5)3]s with substituted aryl halides. [Pg.261]

Tris (triphenylphosphine) nickel, tris (tri-p-tolylphosphine) nickel, and bis (1,3-diphenylphosphinepropane) nickel proved to be good catalysts, the first being slightly more effective. The tricyclohexylphosphine complex was a very poor catalyst, and bis (cyclooctadiene) nickel did not catalyze cyanation. Cyanation of several substituted aromatic halides in the presence of Ni[P(C6H5)3]3 prepared by reducing dichlorobis (triphenylphosphine) nickel (II) 2 with a powdered manganese iron (80 20) alloy (Reaction 3) is reported in Table II. [Pg.265]

The formation of complexes of l,2,3,4-thiatriazole-5-thiol has been well described in CHEC-II(1996) 1,2,3,4-thiatriazole-5-thiol can form complexes with various metals such as palladium, nickel, platinum, cobalt, zinc, etc. <1996CHEC-II(4)691>. These complexes can be prepared either by cycloaddition reactions of carbon disulfide with metal complexes of azide anion (Equation 20) or directly from the sodium salt of l,2,3,4-thiatriazole-5-thiol with metal salts. For instance, the palladium-thiatriazole complex 179 can be obtained as shown in Equation (20) or it may be formed from palladium(ll) nitrate, triphenylphosphine, and sodium thiatriazolate-5-thiolate. It should be noted that complexes of azide ion react with carbon disulfide much faster than sodium azide itself. [Pg.479]

Bis-3,4-(trifluoromethyl)-l,2-diselenete 651 is prepared by refluxing selenium with hexafluoro-2-butyne. It reacts with triphenylphosphine and triphenyl-arsine. Triphenylphosphine selenide was isolated, but no other compounds were identified.Ring-opened complexes with nickel, copper, vanadium, molybdenum (652), tungsten, iron, and cobalt are analogous to complexes of the 1,2-dithiete (527) (Section XXXV.2.C.). [Pg.672]

Under remarkably mild conditions aromatic cyanides can be prepared from halogen compounds with alkali metal cyanides in the presence of transition metal complexes. Complexes of palladium and nickel are particularly useful, for instance tetrakis(triphenylphosphine)palladium(0) (6), tris(triphe-nylphosphine)nickel(O) (7) or trun -dichlorobis(triphenylphosphine)nickel(II) (8 Scheme 7). [Pg.232]

The relatively weak Ar-Br and especially Ar-I bonds would readily dissociate, giving rise to the Ni(I) paramagnetic complex and free aryl radical. This decomposition path is normally disfavored for aryl chlorides with considerably stronger Ar-Cl bonds. As a result, no Ni(I) species formed in the reactions of all chlo-roarenes studied, the only exception being [p-Me3NC6H4Cl]+. The p value of 5.4 obtained by Tsou and Kochi [33] is close to that (8.8 see above) previously reported by Foa and Cassar [32], suggesting that SET (Scheme 1) may play a certain role in some of the reactions of triphenylphosphine nickel(O) complexes with chloroarenes. It is still unclear if every reaction between any chloroarene and Ni(0) always involves the SET step. However, the excellent selectivity of the o-aryl Ni(II) complex formation from ArCl and highly reactive Ni(0) makes chloroarenes especially attractive substrates for various arylation reactions catalyzed by Ni complexes. [Pg.198]

In this study, at first a series of nickel(II)-triphenylphosphine complexes with derivatives of A-(2-pyridyl)-N -(salicylidene)hydrazine (NiLl-NiL5) were prepared and catalytic activity of complexes was studied in ethyl-methylimidazolium (emim) at room temperature. The results show that this method is very useful for the oxidation of aromatic, aliphatic, and allylic alcohols to their corresponding carbonyl compounds in a conversion range of 60-96%. The catalytic activity of complexes notably varies with the size of the substituents. It was observed that the activity decreases with increase in the bulkiness of the substituents. This may be due to steric hindrance causes by the substituent, which can affect the planarity of the ligand in the complexes. Further, ionic liquid ethyl-methylimidazolium (emim) was recycled up to 90% along with the catalyst. Both ionic liquid and catalyst could be reused at least for ten times. [Pg.373]


See other pages where Triphenylphosphine nickel complexes with is mentioned: [Pg.627]    [Pg.336]    [Pg.627]    [Pg.77]    [Pg.83]    [Pg.314]    [Pg.241]    [Pg.252]    [Pg.156]    [Pg.777]    [Pg.809]    [Pg.832]    [Pg.108]    [Pg.159]    [Pg.261]    [Pg.263]    [Pg.250]    [Pg.220]    [Pg.200]    [Pg.1011]    [Pg.845]    [Pg.157]    [Pg.5642]    [Pg.305]    [Pg.907]    [Pg.3445]    [Pg.335]    [Pg.330]    [Pg.34]    [Pg.28]    [Pg.385]   
See also in sourсe #XX -- [ Pg.4 , Pg.156 ]




SEARCH



Nickel complexes, with

Nickel triphenylphosphine

Triphenylphosphine complexes

Triphenylphosphine, nickel complexes

With nickel

© 2024 chempedia.info