Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triacylglycerol hormone

The pathways for liberation of fatty acids from triacylglycerols, either from adipose cells or from the diet, are shown in Figures 24.2 and 24.3. Fatty acids are mobilized from adipocytes in response to hormone messengers such as adren-... [Pg.776]

FIGURE 24.2 Liberation of fatty acids from triacylglycerols in adipose tissue is hormone-dependent. [Pg.777]

FIGURE 25.17 Hormonal signals regulate fatty acid synthesis, primarily through actions on acetyl-CoA carboxylase. Availability of fatty acids also depends upon hormonal activation of triacylglycerol lipase. [Pg.819]

Increased lipid synthesis/inhibi-tion of lipolysis Activation of lipoprotein lipase (LPL)/induc-tion of fatty acid synthase (FAS)/inactivation of hormone sensitive lipase (HSL) Facilitated uptake of fatty acids by LPL-dependent hydrolysis of triacylglycerol from circulating lipoproteins. Increased lipid synthesis through Akt-mediated FAS-expression. Inhibition of lipolysis by preventing cAMP-dependent activation of HSL (insulin-dependent activation of phosphodiesterases )... [Pg.634]

Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)... Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)...
Otfier fiormones accelerate tfie release of free fatty acids from adipose tissue and raise tfie plasma free fatty acid concentration by increasing the rate of lipolysis of the triacylglycerol stores (Figure 25—8). These include epinephrine, norepinephrine, glucagon, adrenocorticotropic hormone (ACTH), a- and P-melanocyte-stimulat-ing hormones (MSH), thyroid-stimulating hormone (TSH), growth hormone (GH), and vasopressin. Many of these activate the hormone-sensitive hpase. For an optimal effect, most of these lipolytic processes require the presence of glucocorticoids and thyroid hormones. These hormones act in a facilitatory or permissive capacity with respect to other lipolytic endocrine factors. [Pg.215]

Adipose tissue Storage and breakdown of triacylglyc-erol Esterification of fatty acids and lipolysis lipogenesis Glucose, lipoprotein triacylglycerol Free fatty acids, glycerol Lipoprotein lipase, hormone-sensitive lipase... [Pg.235]

Figure 7.9 The degradation of triaq/lglycerol in adipose tissue to fatty acids and glycerol. The figure indicates the progressive release of fatly acids and the types of fatty acid that are usually present at each position and, therefore, released from each position as the triacylglycerol molecule. Sat. - Saturated. A lipase that is not regulated by hormones is also present is adipose tissue. It is continually active. Its role is described below. Figure 7.9 The degradation of triaq/lglycerol in adipose tissue to fatty acids and glycerol. The figure indicates the progressive release of fatly acids and the types of fatty acid that are usually present at each position and, therefore, released from each position as the triacylglycerol molecule. Sat. - Saturated. A lipase that is not regulated by hormones is also present is adipose tissue. It is continually active. Its role is described below.
The physiological pathway for oxidation of fatty acids in organs or tissues starts with the enzyme triacylglycerol lipase within adipose tissue, that is, the hormone-sensitive lipase. This enzyme, plus the other two lipases, results in complete hydrolysis of the triacylglycerol to fatty acids, which are transported to various tissues that take them up and oxidise them by P-oxidation to acetyl-CoA. This provides a further example of a metabolic pathway that spans more than one tissue (Figure 7.13) (Box 7.1). [Pg.136]

Two conditions in which the rate of ketone body formation is increased are hypoglycaemia and prolonged starvation in adults or short-term starvation in children. What is the mechanism for increasing the rate Although there are several fates for fatty acids in the liver, triacylglycerol, phospholipid and cholesterol formation and oxidation via the Krebs cycle, the dominant pathway is ketone body formation (Figure 7.20). Three factor regulate the rate of ketone body formation (i) hormone sensitive lipase activ-... [Pg.139]

The hormone leptin, which is secreted by adipose tissue, is considered to play a role in the control of the amount of triacylglycerol in adipose tissue by decreasing appetite and by increasing energy expenditure. Leptin increases the rate of the triacylglycerol fatty acid cycle (Chapter 15). [Pg.203]

In the ebb phase, there is increased activity of the sympathetic nervous system and increased plasma levels of adrenaline and glucocorticoids but a decreased level of insulin. This results in mobilisation of glycogen in the liver and triacylglycerol in adipose tissue, so that the levels of two major fuels in the blood, glucose and long-chain fatty acids, are increased. This is, effectively, the stress response to trauma. These changes continue and are extended into the flow phase as the immune cells are activated and secrete the proinflammatory cytokines that further stimulate the mobilisation of fuel stores (Table 18.2). Thus the sequence is trauma increased endocrine hormone levels increased immune response increased levels of cytokines metabolic responses. [Pg.418]

The initial step to release fatty acids is triacylglycerol hydrolysis catalyzed by hormone-sensitive (HS) lipase. [Pg.109]

Hormone-sensitive lipase PMRRSV Triacylglycerol mobilization and fatty acid oxidation... [Pg.440]

Chylomicrons deliver tiiacylglycerols to tissues, where lipoprotein lipase releases free fatty acids for entry into cells. Triacylglycerols stored in adipose tissue are mobilized by a hormone-sensitive triacylglycerol lipase. The released fatty acids bind to serum albumin and are carried in the blood to the heart, skeletal muscle, and other tissues that use fatty acids for fuel. [Pg.637]

We first describe the biosynthesis of fatty acids, the primary components of both triacylglycerols and phospholipids, then examine the assembly of fatty acids into triacylglycerols and the simpler membrane phospholipids. Finally, we consider the synthesis of cholesterol, a component of some membranes and the precursor of steroids such as the bile acids, sex hormones, and adrenocortical hormones. [Pg.787]

T Biosynthesis and degradation of triacylglycerols are regulated such that the favored path depends on the metabolic resources and requirements of the moment. The rate of triacylglycerol biosynthesis is profoundly altered by the action of several hormones. Insulin, for example, promotes the conversion of carbohydrate to triacylglycerols (Fig. 21-19). People with severe diabetes mellitus, due to failure of insulin secretion or action, not only are unable to use glucose properly but also fail to synthesize fatty acids from... [Pg.804]

Adipose tissue, which consists of adipocytes (fat cells) (Fig. 23-16), is amorphous and widely distributed in the body under the skin, around the deep blood vessels, and in the abdominal cavity. It typically makes up about 15% of the mass of a young adult human, with approximately 65% of this mass in the form of triacylglycerols. Adipocytes are metabolically very active, responding quickly to hormonal stimuli in a metabolic interplay with the liver, skeletal muscles, and the heart. [Pg.897]

The dietary triacylglycerol, cholesteryl esters, and phospholipids are enzymically degraded ("digested") by pancreatic enzymes, whose secretion is hormonally controlled. [Pg.173]


See other pages where Triacylglycerol hormone is mentioned: [Pg.777]    [Pg.197]    [Pg.214]    [Pg.214]    [Pg.479]    [Pg.150]    [Pg.225]    [Pg.133]    [Pg.255]    [Pg.109]    [Pg.634]    [Pg.634]    [Pg.634]    [Pg.634]    [Pg.640]    [Pg.804]    [Pg.806]    [Pg.807]    [Pg.808]    [Pg.808]    [Pg.808]    [Pg.897]    [Pg.171]    [Pg.179]    [Pg.188]    [Pg.196]    [Pg.198]    [Pg.234]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Hormone-sensitive triacylglycerol

Hormone-sensitive triacylglycerol lipase

Triacylglycerols

© 2024 chempedia.info