Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport systems lipids

Some transport proteins merely provide a path for the transported species, whereas others couple an enzymatic reaction with the transport event. In all cases, transport behavior depends on the interactions of the transport protein not only with solvent water but with the lipid milieu of the membrane as well. The dynamic and asymmetric nature of the membrane and its components (Chapter 9) plays an important part in the function of these transport systems. [Pg.297]

All of the transport systems examined thus far are relatively large proteins. Several small molecule toxins produced by microorganisms facilitate ion transport across membranes. Due to their relative simplicity, these molecules, the lonophore antibiotics, represent paradigms of the mobile carrier and pore or charmel models for membrane transport. Mobile carriers are molecules that form complexes with particular ions and diffuse freely across a lipid membrane (Figure 10.38). Pores or channels, on the other hand, adopt a fixed orientation in a membrane, creating a hole that permits the transmembrane movement of ions. These pores or channels may be formed from monomeric or (more often) multimeric structures in the membrane. [Pg.321]

Molecules that cannot pass freely through the lipid bilayer membrane by themselves do so in association with carrier proteins. This involves two processes— facilitated dififrision and active transport—and highly specific transport systems. [Pg.426]

The table also lists important globulins in blood plasma, with their mass and function. The a- and p-globulins are involved in the transport of lipids (lipoproteins see p. 278), hormones, vitamins, and metal ions. In addition, they provide coagulation factors, protease inhibitors, and the proteins of the complement system (see p. 298). Soluble antibodies (immunoglobulins see p. 300) make up the y-globulin fraction. [Pg.276]

Transport systems. Partitioning of various types of molecules such as allelochemlcals into the lipid bilayer of the mitochondrial inner membrane can perturb the membrane and alter the conformation, properties, and function of components of the membranes. Unfortunately, it is not always possible to demonstrate directly the existence of carrier systems, but indirect evidence can be obtained. Alterations induced to the membrane are sometimes reflected in the osmotic behavior of mitochondria. The inner membrane is relatively impermeable to many cations, including K and H, and many solutes (31). Hence, the organelles are osmotic-ally stable under certain conditions. Indications were obtained that the allelochemlcals inhibited the action of carrier-mediated transport processes associated with the mitochondrial inner membrane (as reflected in the osmotic behavior). Responses obtained with quercetin are shown in Figure 3. Mitochondria are osmotically... [Pg.255]

In the human body choline is needed for the synthesis of phospholipids in cell membranes, methyl metabolism, transmembrane signaling and lipid cholesterol transport and metabolism [169]. It is transported into mammalian cells by a high-affinity sodium-dependent transport system. Intracellular choline is metabolized to phosphorylcholine, the reaction being catalyzed by the enzyme choline... [Pg.176]

The guanidines, comprising dodine and guazatine, have long-chain alkyl groups and act as non-specific detergents. The lipophilic alkyl chain attaches to the lipid fraction of membranes whilst the polar guanidino portion remains in the aqueous phase. The result is a disruption in the membrane permeability characteristics and active transport systems. [Pg.102]

Thus, the fat globules are surrounded, at least initially, by a membrane typical of eukaryotic cells. Membranes are a conspicuous feature of all cells and may represent 80% of the dry weight of some cells. They serve as barriers separating aqueous compartments with different solute composition and as the structural base on which many enzymes and transport systems are located. Although there is considerable variation, the typical composition of membranes is about 40% lipid and 60% protein. The lipids are mostly polar (nearly all the polar lipids in cells are located in the membranes), principally phospholipids and cholesterol in varying proportions. Membranes contain several proteins, perhaps up to 100 in complex membranes. Some of the proteins, referred to as extrinsic or peripheral, are loosely attached to the membrane surface and are easily removed by mild extraction procedures. The intrinsic or integral proteins, about 70% of the total protein, are tightly bound to the lipid portion and are removed only by severe treatment, e.g. by SDS or urea. [Pg.114]

There are, however, various types of active transport systems, involving protein carriers and known as uniports, symports, and antiports as indicated in Figure 3.7. Thus, symports and antiports involve the transport of two different molecules in either the same or a different direction. Uniports are carrier proteins, which actively or passively (see section "Facilitated Diffusion") transport one molecule through the membrane. Active transport requires a source of energy, usually ATP, which is hydrolyzed by the carrier protein, or the cotransport of ions such as Na+ or H+ down their electrochemical gradients. The transport proteins usually seem to traverse the lipid bilayer and appear to function like membrane-bound enzymes. Thus, the protein carrier has a specific binding site for the solute or solutes to be transferred. For example, with the Na+/K+ ATPase antiport, the solute (Na+) binds to the carrier on one side of... [Pg.42]

The involvement of lipid membrane constituents in the interaction of ATP with the protein moiety of the calcium transport system emerges if one compares the reaction of ATP with membrane preparations whose lipid matrix has been removed or modified... [Pg.31]

The plasma lipoproteins are spherical macromolecular complexes of lipids and specific proteins (apolipoproteins or apoproteins). The lipoprotein particles include chylomicrons, very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). They differ in lipid and protein composition, size, and density (Figure 18.13). Lipoproteins function both to keep their component lipids soluble as they transport them in the plasma, and also to provide an efficient mechanism for transporting their lipid contents to (and from) the tissues. In humans, the transport system is less perfect than in other animals and, as a result, humans experience a yradual deposition of lipid—especially cholesterol—in tissues. This is a potentially life-threat-en ng occurrence when the lipid deposition contributes to plaque formation, causing the narrowing of blood vessels (atherosclerosis). [Pg.225]

Many of the proteins of membranes are enzymes. For example, the entire electron transport system of mitochondria (Chapter 18) is embedded in membranes and a number of highly lipid-soluble enzymes have been isolated. Examples are phosphatidylseiine decarboxylase, which converts phosphatidylserine to phosphatidylethanolamine in biosynthesis of the latter, and isoprenoid alcohol phosphokinase, which participates in bacterial cell wall synthesis (Chapter 20). A number of ectoenzymes are present predominantly on the outsides of cell membranes.329 Enzymes such as phospholipases (Chapter 12), which are present on membrane surfaces, often are relatively inactive when removed from the lipid environment but are active in the presence of phospholipid bilay-ers.330 33 The distribution of lipid chain lengths as well as the cholesterol content of the membrane can affect enzymatic activities.332... [Pg.409]

The regulation of osmotic pressure within the cell and the control of the passage of water into or out of the cell is dependent to a considerable extent on the control of the potassium and sodium in the cell by the transport systems of the cell wall. The cell wall itself is of protein-lipid composition and is 111 general impermeable to the passage of water and inorganic salts. Recent studies of the cell walls with elecrron microscopes and with the use of other investigative techniques indicate that the cell wall contains pores... [Pg.1363]


See other pages where Transport systems lipids is mentioned: [Pg.349]    [Pg.349]    [Pg.263]    [Pg.268]    [Pg.324]    [Pg.686]    [Pg.183]    [Pg.666]    [Pg.813]    [Pg.12]    [Pg.102]    [Pg.321]    [Pg.318]    [Pg.68]    [Pg.198]    [Pg.86]    [Pg.246]    [Pg.273]    [Pg.371]    [Pg.14]    [Pg.152]    [Pg.212]    [Pg.374]    [Pg.60]    [Pg.126]    [Pg.73]    [Pg.198]    [Pg.316]    [Pg.85]    [Pg.112]    [Pg.56]    [Pg.332]    [Pg.28]    [Pg.42]    [Pg.805]    [Pg.901]    [Pg.480]    [Pg.3]    [Pg.4]   
See also in sourсe #XX -- [ Pg.46 , Pg.47 ]




SEARCH



Lipid transport

Lipid transporters

Systemic Transport

Transport systems

Transport systems/transporters

© 2024 chempedia.info