Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport processes mechanisms

The analogy theories derive their name from the similarity of the transport process mechanisms and the mathematical descriptions of the phenomena. For the purposes of this section, the mass and momentum flux relationships are needed. Each is quantified by a simple equation using gradients of concentration and velocity and the respective coefficients of diffiisivity as constants. [Pg.27]

Such alternative concentration-dependent MTC flux equations are convenient in combining the individual processes formulating the overall flux expressions needed in multimedia models see Chapter 4. As basic rate of transport parameters, the MTCs are convenient to use in evaluating and interpreting the controlling chemical transport process mechanisms in specific situations. [Pg.476]

The applications of this simple measure of surface adsorbate coverage have been quite widespread and diverse. It has been possible, for example, to measure adsorption isothemis in many systems. From these measurements, one may obtain important infomiation such as the adsorption free energy, A G° = -RTln(K ) [21]. One can also monitor tire kinetics of adsorption and desorption to obtain rates. In conjunction with temperature-dependent data, one may frirther infer activation energies and pre-exponential factors [73, 74]. Knowledge of such kinetic parameters is useful for teclmological applications, such as semiconductor growth and synthesis of chemical compounds [75]. Second-order nonlinear optics may also play a role in the investigation of physical kinetics, such as the rates and mechanisms of transport processes across interfaces [76]. [Pg.1289]

Many factors affect the mechanisms and kinetics of sorption and transport processes. For instance, differences in the chemical stmcture and properties, ie, ionizahility, solubiUty in water, vapor pressure, and polarity, between pesticides affect their behavior in the environment through effects on sorption and transport processes. Differences in soil properties, ie, pH and percentage of organic carbon and clay contents, and soil conditions, ie, moisture content and landscape position climatic conditions, ie, temperature, precipitation, and radiation and cultural practices, ie, crop and tillage, can all modify the behavior of the pesticide in soils. Persistence of a pesticide in soil is a consequence of a complex interaction of processes. Because the persistence of a pesticide can govern its availabiUty and efficacy for pest control, as weU as its potential for adverse environmental impacts, knowledge of the basic processes is necessary if the benefits of the pesticide ate to be maximized. [Pg.219]

Turbulent Diffusion FDmes. Laminar diffusion flames become turbulent with increasing Reynolds number (1,2). Some of the parameters that are affected by turbulence include flame speed, minimum ignition energy, flame stabilization, and rates of pollutant formation. Changes in flame stmcture are beHeved to be controlled entirely by fluid mechanics and physical transport processes (1,2,9). [Pg.519]

It is not unusual for the full chemical potential of a reaction to be diminished by slower transport processes (i.e., to be transport limited). In fast liquid phase enzyme reactions, mechanical stirring rates can have a strong influence on the observed kinetics that may be limited by the rate of contacting of the reactants and enzymes. Most heterogeneous catalytic reactions take... [Pg.226]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]

J. G. Kirkwood and J. Boss, The Statistical Mechanical Basis of the Boltzmann Equation, in I. Frigogine, ed., Transport Processes in Statistical Mechanics, pp. 1-7, Interscience Publishers, Inc., New York, 1958. Also, J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes I. General Theory, J, Chem, Phys, 14, 180 (1946) II. Transport in Gases, J, Chem. Phys, 15, 72 (1947). [Pg.43]

To close this chapter we emphasize that Hie statistical mechanical definition of macroscopic parameters such as temperature and entropy are well designed to describe isentropic equilibrium systems, but are not immediately applicable to the discussion of transport processes where irreversible entropy increase is an essential feature. A macroscopic system through which heat is flowing does not possess a single tempera-... [Pg.482]

A CVD reaction is governed by thermodynamics, that is the driving force which indicates the direction the reaction is going to proceed (if at all), and hykinetics, which defines the transport process and determines the rate-control mechanism, in other words, how fast it is going. [Pg.38]

In summary, this discussion illustrates the general importance of transport processes in many (electro)catalytic reactions. These have to be addressed properly for a detailed (and quantitative) understanding of the molecular-scale mechanism. Because of the problems associated with the direct identification of the reaction intermediates (see above), experiments on nanostructured model electrodes with a well-defined distribution of reaction sites of controlled, variable distance and under equally well-defined transport conditions (first attempts in this direction are described in [Lindstrom et al., submitted Schneider et al., 2008]), in combination with detailed simulations of the ongoing transport processes and theoretical calculations of the... [Pg.449]

He is the author of two other books. Nonequilibrium Thermodynamics (1962) and Vector Analysis in Chemistry (1974), and has published research articles on the theory of optical rotation, statistical mechanical theory of transport processes, nonequilibrium thermodynamics, molecular quantum mechanics, theory of liquids, intermolecular forces, and surface phenomena. [Pg.354]

Physico-chemical properties. Chemical and biochemical degradation pathways and physical mechanisms of removal or disappearance by transport process govern the fate of agrochemicals in the environment. Therefore, the physico-chemical properties of the chemical listed below regarding persistence in sediment or water are important ... [Pg.895]

The assessment of clearance is complicated by the numerous mechanisms by which compounds may be cleared from the body. These mechanisms include oxidative metabolism, most commonly by CYP enzymes, but also in some cases by other enzymes including but not limited to monoamine oxidases (MAO), flavin-containing monooxygenases (FMO), and aldehyde oxidase [45, 46], Non-oxidative metabolism such as conjugation or hydrolysis may be effected by enzymes such as glucuronyl transferases (UGT), glutathione transferases (GST), amidases, esterases, or ketone reductases, as well as other enzymes [47, 48], In addition to metabolic pathways, parent compound may be excreted directly via passive or active transport processes, most commonly into the urine or bile. [Pg.155]

Anandamide is inactivated in two steps, first by transport inside the cell and subsequently by intracellular enzymatic hydrolysis. The transport of anandamide inside the cell is a carrier-mediated activity, having been shown to be a saturable, time- and temperature-dependent process that involves some protein with high affinity and specificity for anandamide (Beltramo, 1997). This transport process, unlike that of classical neurotransmitters, is Na+-independent and driven only by the concentration gradient of anandamide (Piomelli, 1998). Although the anandamide transporter protein has not been cloned yet, its well characterized activity is known to be inhibited by specific transporter inhibitors. Reuptake of 2-AG is probably mediated by the same facilitating mechanism (Di Marzo, 1999a,b Piomelli, 1999). [Pg.109]

It is now recognised that a wide range of organic molecules, collectively termed ionophores 185,186) or complexones 187), are able to facilitate ion (usually cation) transport. Two major mechanisms have been revealed for this process, namely the involvement of transmembrane ion carriers and transmembrane pores or channels (see Fig. 19). The majority of ionophores studied to date are natural antibiotics and their synthetic analogues which are, on a biological scale, comparatively small molecules lending themselves to study outside the biological system. In contrast far less is known about the molecular structures involved in normal transport processes. Such molecules are likely to be more complex or present in small amounts and may require... [Pg.180]

The enthusiasm for using Caco-2 cells and other epithelial cell cultures in studies of drug transport processes has been explained by the ease with which new information can be derived from these fairly simple in vitro models [7]. For instance, drug transport studies in Caco-2 cells grown on permeable supports are easy to perform under controlled conditions. This makes it possible to extract information about specific transport processes that would be difficult to obtain in more complex models such as those based on whole tissues from experimental animals. Much of our knowledge about active and passive transport mechanisms in epithelia has therefore been obtained from Caco-2 cells and other epithelial cell cultures [10-15]. This has been possible since Caco-2 cells are unusually well differentiated. In many respects they are therefore functionally similar to the human small intestinal enterocyte, despite the fact that they originate from a human colorectal carcinoma [16, 17]. [Pg.73]


See other pages where Transport processes mechanisms is mentioned: [Pg.784]    [Pg.512]    [Pg.324]    [Pg.208]    [Pg.134]    [Pg.168]    [Pg.298]    [Pg.301]    [Pg.693]    [Pg.181]    [Pg.417]    [Pg.190]    [Pg.139]    [Pg.49]    [Pg.224]    [Pg.305]    [Pg.669]    [Pg.218]    [Pg.49]    [Pg.64]    [Pg.117]    [Pg.279]    [Pg.148]    [Pg.260]    [Pg.32]    [Pg.113]    [Pg.113]    [Pg.192]    [Pg.375]    [Pg.472]    [Pg.394]    [Pg.496]    [Pg.156]    [Pg.77]   


SEARCH



Mechanical process

Mechanisms process

Processing mechanics

Processive mechanism

Transport mechanical

Transport mechanisms

Transport processes

Transportation processes

Transporters mechanisms

© 2024 chempedia.info