Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Parameters transport

TRANFIT A Fortran Computer Code Package for the Evolution of Gas-Phase Multicomponent Transport Properties, Kee, R. J., Dixon-Lewis, G., Wamatz, J., Coltrin, M. E. and Miller, J. A. Sandia National Laboratories, Livermore, CA, Sandia Report SAND86-8246, 1986. TRANFIT is a Fortran computer code (tranlib.f, tranfit.f, and trandatf) that allows for the evaluation and polynomial fitting of gas-phase multicomponent viscosities, thermal conductivities, and thermal diffusion coefficients. [Pg.748]

CHEMKIN is now maintained and distributed by Reaction Design, Inc., which is a software company licensed by Sandia National Laboratories. CHEMKIN 4.1 is the latest commercial version of the CHEMKIN software suite from Reaction Design. The software suite has all the application modules of CHEMKIN II and III (such as SURFACE CHEMKIN, EQUIL, SENKIN, PSR, and PREMIX), and has been extended to include many more. Refer to the website http //www.reactiondesign.com/lobby/open/index.html for more information. [Pg.749]

SURFTHERM Coltrin, M. E. and Moffat, H. K. Sandia National Laboratories. SURFTHERM is a Fortran program (surftherm.f) that is used in combination with CHEMKIN (and SURFACE CHEMKIN) to aid in the development and analysis of chemical mechanisms by presenting in tabular form detailed information about the temperature and pressure dependence of chemical reaction rate constants and their reverse rate constants, reaction equilibrium constants, reaction thermochemistry, chemical species thermochemistry, and transport properties. [Pg.749]

CHEMKIN REAL-GAS A Fortran Package for Analysis of Thermodynamic Properties and Chemical Kinetics in Nonideal Systems, Schmitt, R. G., Butler, P. B. and French, N. B. The University of Iowa, Iowa City, IA. Report UIME PBB 93-006,1993. A Fortran program (rglib.f and rgin-terp.f) used in connection with CHEMKIN-II that incorporates several real-gas equations of state into kinetic and thermodynamic calculations. The real-gas equations of state provided include the van der Waals, Redlich-Kwong, Soave, Peng-Robinson, Becker-Kistiakowsky-Wilson, and Nobel-Abel. [Pg.749]

CHEMClean and CHEMDiffs The Comparison of Detailed Chemical Kinetic Mechanisms Application to the Combustion of Methane, Rolland, S. and Simmie, J. M. Int. J. Chem. Kinet. 36(9), 467 471, (2004). These programs may be used with CHEMKIN to (1) clean up an input mechanism file and (2) to compare two clean mechanisms. Refer to the website http //www. nuigalway.ie/chem/c3/software.htm for more information. [Pg.750]


In either equation, /c is given by Eq. (16-84) for parallel pore and surface diffusion or by Eq. (16-85) for a bidispersed particle. For nearly linear isotherms (0.7 < R < 1.5), the same linear addition of resistance can be used as a good approximation to predict the adsorption behavior of packed beds, since solutions for all mechanisms are nearly identical. With a highly favorable isotherm (R 0), however, the rate at each point is controlled by the resistance that is locally greater, and the principle of additivity of resistances breaks down. For approximate calculations with intermediate values of R, an overall transport parameter for use with the LDF approximation can be calculated from the following relationship for sohd diffusion and film resistance in series... [Pg.1516]

In a permeation experiment, an HERO module with a membrane area of 200 m is used to remove a nickel salt from an electroplating wastewater. TTie feed to the module has a flowrate of 5 x IQ— m /s, a nickel-salt composition of 4,(X)0 ppm and an osmotic pressure of 2.5 atm. The average pressure difference across the membrane is 28 atm. The permeate is collected at atmospheric pressure. The results of the experiment indicate that the water recovery is 80% while the solute rejection is 95%. Evaluate the transport parameters Ay and (D2u/KS). [Pg.271]

Where large samples of reactant are used and/or where C02 withdrawal is not rapid or complete, the rates of calcite decomposition can be controlled by the rate of heat transfer [748] or C02 removal [749], Draper [748] has shown that the shapes of a—time curves can be altered by varying the reactant geometry and supply of heat to the reactant mass. Under the conditions used, heat flow, rather than product escape, was identified as rate-limiting. Using large ( 100 g) samples, Hills [749] concluded that the reaction rate was controlled by both the diffusion of heat to the interface and C02 from it. The proposed models were consistent with independently measured values of the transport parameters [750—752] whether these results are transfenable to small samples is questionable. [Pg.171]

Combine these data with estimates of the transport parameters to model the desired full-scale plant. [Pg.224]

Analytical solutions for the closure problem in particular unit cells made of two concentric circles have been developed by Chang [68,69] and extended by Hadden et al. [145], In order to use the solution of the potential equation in the determination of the effective transport parameters for the species continuity equation, the deviations of the potential in the unit cell, defined by... [Pg.598]

No specific ionic selectivity is really admitted in pectins with monovalent counterions due to the relativity low charge parameter a very interesting behaviour is observed when divalent counterions are considered. Specially, it was demonstrated that when DM<50% the activity coefficient of magnesium is much larger than that of calcium. The transport parameters (f) were found following the order [45] ... [Pg.28]

The role of radionuclides as tracer of the chemical transport in river is also reinforced by the fact that each of the U-Th-Ra elements has several isotopes of very different half-lives belonging to the U-Th radioactive series. Thus, these series permit comparison of the behavior of isotopes of the same element which are supposed to have the same chemical properties, but very different lifetimes. These comparisons should be very helpful in constraining time scales of transport in rivers. This was illustrated by Porcelli et al. (2001) who compared ( " Th/ U) and ( °Th/ U) ratios in Kalix river waters and estimated a transit time for Th of 15 10 days in this watershed. The development of such studies in the future should lead to an important progress in understanding and quantifying of transport parameters in surface waters. This information could be crucial for a correct use of U-series radioactive disequilibria measured in river waters to establish weathering budgets at the scale of a watershed. [Pg.565]

Mapping of transport parameters in complex pore spaces is of interest for many respects. Apart from classical porous materials such as rock, brick, paper and tissue, one can think of objects used in microsystem technology. Recent developments such as lab-on-a-chip devices require detailed knowledge of transport properties. More detailed information can be found in new journals such as Lab on a Chip [1] and Microfluidics and Nanofluidics [2], for example, devoted especially to this subject. Electrokinetic effects in microscopic pore spaces are discussed in Ref. [3]. [Pg.205]

Accomplishing this requires a fundamental understanding of how the physical properties of the fluid and the porous solid affect the NMR measurables, which then permits the reverse study of how to interpret the NMR measured parameters in terms of the structure/transport parameters of interest. [Pg.306]

Shah et al. [51] demonstrated the use of a donor-receptor compartment apparatus separated by a cell monolayer to estimate membrane transport parameters. Permeability coefficients, P, were calculated as... [Pg.94]

If initial solute uptake rate is determined from intestinal tissue incubated in drug solution, uptake must be normalized for intestinal tissue weight. Alternative capacity normalizations are required for vesicular or cellular uptake of solute (see Section VII). Cellular transport parameters can be defined either in terms of kinetic rate-time constants or in terms of concentration normalized flux [Eq. (5)]. Relationships between kinetic and transport descriptions can be made on the basis of information on solute transport distances. Note that division of Eq. (11) or (12) by transport distance defines a transport resistance of reciprocal permeability (conductance). [Pg.183]

Imanidis G, C Waldner, C Mettler, H Leuenberger. (1996). An improved diffusion cell design for determining drug transport parameters across cultured cell monolayers. J Pharm Sci 85 1196-1203. [Pg.331]

We would like to point out that an order parameter indicates the static property of the lipid bilayer, whereas the rotational motion, the oxygen transport parameter (Section 4.1), and the chain bending (Section 4.4) characterize membrane dynamics (membrane fluidity) that report on rotational diffusion of alkyl chains, translational diffusion of oxygen molecules, and frequency of alkyl chain bending, respectively. The EPR spin-labeling approach also makes it possible to monitor another bulk property of lipid bilayer membranes, namely local membrane hydrophobicity. [Pg.194]

Here x from Equation 10.4 is changed to the two-membrane domain FOT and SLOT with the depth fixed (the same spin label is distributed between the FOT and SLOT domains). W(FOT) and W(SLOT) are oxygen transport parameters in each domain and represent the collision rate in samples equilibrated with air. Figure 10.9 illustrates the basis of the discrimination by oxygen transport (DOT) method, showing saturation-recovery EPR signals for 5-SASL in membranes... [Pg.199]

Ashikawa, I., J.-J. Yin, W. K. Subczynski, T. Kouyama, J. S. Hyde, and A. Kusumi. 1994. Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes Discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33 4947 1952. [Pg.209]

Kusumi, A., W. K. Subczynski, and J. S. Hyde. 1982b. Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc. Natl. Acad. Sci. USA 79 1854-1858. [Pg.210]


See other pages where Parameters transport is mentioned: [Pg.1941]    [Pg.76]    [Pg.233]    [Pg.271]    [Pg.271]    [Pg.272]    [Pg.281]    [Pg.15]    [Pg.46]    [Pg.564]    [Pg.603]    [Pg.603]    [Pg.98]    [Pg.338]    [Pg.74]    [Pg.76]    [Pg.76]    [Pg.194]    [Pg.184]    [Pg.189]    [Pg.197]    [Pg.197]    [Pg.197]    [Pg.198]    [Pg.198]    [Pg.200]    [Pg.200]    [Pg.204]    [Pg.207]    [Pg.208]   
See also in sourсe #XX -- [ Pg.748 ]

See also in sourсe #XX -- [ Pg.89 , Pg.109 ]

See also in sourсe #XX -- [ Pg.610 ]

See also in sourсe #XX -- [ Pg.133 ]

See also in sourсe #XX -- [ Pg.226 ]

See also in sourсe #XX -- [ Pg.405 ]

See also in sourсe #XX -- [ Pg.261 ]




SEARCH



© 2024 chempedia.info