Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport diffusivities

The Ru surface is one of the simplest known, but, like virtually all surfaces, it includes defects, evident as a step in figure C2.7.6. The observations show that the sites where the NO dissociates (active sites) are such steps. The evidence for this conclusion is the locations of the N and O atoms there are gradients in the surface concentrations of these elements, indicating that the transport (diffusion) of the O atoms is more rapid than that of the N atoms thus, the slow-moving N atoms are markers for the sites where the dissociation reaction must have occurred, where their surface concentrations are highest. [Pg.2706]

MESOPUFF is a Lagrangian model suitable for modeling die transport, diffusion and removal of air pollutants from multiple point and area sources at transport distances beyond 10-50 KM. [Pg.385]

If a liquid system containing at least two components is not in thermodynamic equilibrium due to concentration inhomogenities, transport of matter occurs. This process is called mutual diffusion. Other synonyms are chemical diffusion, interdiffusion, transport diffusion, and, in the case of systems with two components, binary diffusion. [Pg.162]

The concentrations of the reactants and reaction prodncts are determined in general by the solution of the transport diffusion-migration equations. If the ionic distribution is not disturbed by the electrochemical reaction, the problem simplifies and the concentrations can be found through equilibrium statistical mechanics. The main task of the microscopic theory of electrochemical reactions is the description of the mechanism of the elementary reaction act and calculation of the corresponding transition probabilities. [Pg.638]

The disadvantage of the fluid model is that no kinetic information is obtained. Also, transport (diffusion, mobility) and rate coefficients (ionization, attachment) are needed, which can only be obtained from experiments or from kinetic calculations in simpler settings (e.g. Townsend discharges). Experimental data on... [Pg.68]

Diffusion is characterized by a mass transfer coefficient U8 of 104 m/h, which can be regarded as a molecular diffusivity of 2 x 10 6 m2/h divided by a path length of 0.02 m. In practice, bioturbation may contribute substantially to this exchange process, and in shallow water current-induced turbulence may also increase the rate of transport. Diffusion in association with organic colloids is not included. The D value is thus given as Us AwZ2. [Pg.25]

As seen in Fig. 4.8, the adsorption of lauric acid (C12) is slow because of slow transport (diffusion) at concentrations smaller than 10 6 M. In case of Na+-caprylate (Cs) the attainment of equilibrium is delayed most probably by structural rearrangement at the surface. In case of anions, such association reactions are slower than with free acids. [Pg.109]

PD studies allow us to understand the potency, effectiveness, therapeutic index, and safety margins of drugs. PK information on ADME provides us with an understanding of how drugs are transported, diffused into the bloodstream, and become available to the cells and act on the target sites. [Pg.171]

The moments of the solutions thus obtained are then related to the individual mass transport diffusion mechanisms, dispersion mechanisms and the capacity of the adsorbent. The equation that results from this process is the model widely referred to as the three resistance model. It is written specifically for a gas phase driving force. Haynes and Sarma included axial diffusion, hence they were solving the equivalent of Eq. (9.10) with an axial diffusion term. Their results cast in the consistent nomenclature of Ruthven first for the actual coefficient responsible for sorption kinetics as ... [Pg.285]

Knox, J. B. Numerical modeling of the transport diffusion and deposition of pollutants for r ions and extended scales. J. Air Pollut. Control Assoc. 24 660-664, 1974. [Pg.235]

The scope of kinetics includes (i) the rates and mechanisms of homogeneous chemical reactions (reactions that occur in one single phase, such as ionic and molecular reactions in aqueous solutions, radioactive decay, many reactions in silicate melts, and cation distribution reactions in minerals), (ii) diffusion (owing to random motion of particles) and convection (both are parts of mass transport diffusion is often referred to as kinetics and convection and other motions are often referred to as dynamics), and (iii) the kinetics of phase transformations and heterogeneous reactions (including nucleation, crystal growth, crystal dissolution, and bubble growth). [Pg.6]

In Eqs. (3.58) and (3.59), the kt are the reaction rate constants. We will see in Chapter 4 that many solid-state ceramic processes involve simultaneous mass transport (diffusion), thermal transport, and reaction. [Pg.246]

The motion of ions through solids results in both charge as well as mass transport. Whereas charge transport manifests itself as ionic conductivity in the presence of an applied electric field, macroscopic mass transport (diffusion) occurs in a concentration gradient. Both ionic conductivity and diffusion arise from the presence of point defects in solids (Section 5.2). For a solid showing exclusive ionic conduction, conductivity is written as... [Pg.305]

Chemical clastogenesis and mutagenesis both involve a complex series of processes, including pharmacokinetic mechanisms (uptake, transport, diffusion, excretion), metabolic activation and inactivation, production of DNA lesions and their incomplete repair or misrepair, and steps leading to the subsequent expression of mutations in surviving cells or individuals (Thble 7.1). Each of the steps in these processes might conceivably involve first order kinetics at low doses (e.g., diffusion, MichaeUs-Menten enzyme kinetics) and hence be linear. In principle, therefore, the overall process edso might be linear and without threshold. [Pg.80]

Mutagen in tissues transport diffusion Tissue dose mM mMh... [Pg.80]

For the detailed study of reaction-transport interactions in the porous catalytic layer, the spatially 3D model computer-reconstructed washcoat section can be employed (Koci et al., 2006, 2007a). The structure of porous catalyst support is controlled in the course of washcoat preparation on two levels (i) the level of macropores, influenced by mixing of wet supporting material particles with different sizes followed by specific thermal treatment and (ii) the level of meso-/ micropores, determined by the internal nanostructure of the used materials (e.g. alumina, zeolites) and sizes of noble metal crystallites. Information about the porous structure (pore size distribution, typical sizes of particles, etc.) on the micro- and nanoscale levels can be obtained from scanning electron microscopy (SEM), transmission electron microscopy ( ), or other high-resolution imaging techniques in combination with mercury porosimetry and BET adsorption isotherm data. This information can be used in computer reconstruction of porous catalytic medium. In the reconstructed catalyst, transport (diffusion, permeation, heat conduction) and combined reaction-transport processes can be simulated on detailed level (Kosek et al., 2005). [Pg.121]

Concentration modulation experiments have been reported for applications to heterogeneous catalysis (48). The experimental implementation was accomplished by periodically flowing solutions with different (reactant) concentrations over the catalyst immobilized on the IRE. Fast concentration modulation in the liquid phase is limited by mass transport (diffusion and convection), and an appropriately designed cell is essential. The cell depicted in Fig. 12 has two tubes ending at the same inlet (65). This has the advantage that backmixing in the tubing upstream of the cell can be avoided. With this cell, concentration modulation periods of about 10 s were achieved (45,65). [Pg.261]


See other pages where Transport diffusivities is mentioned: [Pg.2414]    [Pg.504]    [Pg.199]    [Pg.90]    [Pg.199]    [Pg.202]    [Pg.539]    [Pg.94]    [Pg.128]    [Pg.429]    [Pg.199]    [Pg.64]    [Pg.160]    [Pg.113]    [Pg.8]    [Pg.416]    [Pg.417]    [Pg.498]    [Pg.9]    [Pg.14]    [Pg.359]    [Pg.428]    [Pg.178]    [Pg.206]    [Pg.206]    [Pg.221]    [Pg.226]    [Pg.233]    [Pg.263]    [Pg.281]    [Pg.1006]    [Pg.271]   
See also in sourсe #XX -- [ Pg.5 , Pg.6 ]




SEARCH



Diffusion transporters

Transport diffusive

© 2024 chempedia.info