Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transparency window

We can sample the energy density of radiation p(v, T) within a chamber at a fixed temperature T (essentially an oven or furnace) by opening a tiny transparent window in the chamber wall so as to let a little radiation out. The amount of radiation sampled must be very small so as not to disturb the equilibrium condition inside the chamber. When this is done at many different frequencies v, the blackbody spectrum is obtained. When the temperature is changed, the area under the spechal curve is greater or smaller and the curve is displaced on the frequency axis but its shape remains essentially the same. The chamber is called a blackbody because, from the point of view of an observer within the chamber, radiation lost through the aperture to the universe is perfectly absorbed the probability of a photon finding its way from the universe back through the aperture into the chamber is zero. [Pg.2]

For an air/glass interface, tan 0b = n, the refractive index of glass. In a gas laser, the light must be reflected back and forth between mirrors and through the gas container hundreds of times. Each time the beam passes through the cavity, it must pass through transparent windows at the ends of the gas container (Figure 18.10b), and it is clearly important that this transmission be as efficient as possible. [Pg.128]

This confinement yields a higher carrier density of elections and holes in the active layer and fast ladiative lecombination. Thus LEDs used in switching apphcations tend to possess thin DH active layers. The increased carrier density also may result in more efficient recombination because many nonradiative processes tend to saturate. The increased carrier confinement and injection efficiency faciUtated by heterojunctions yields increasing internal quantum efficiencies for SH and DH active layers. Similar to a SH, the DH also faciUtates the employment of a window layer to minimise absorption. In a stmcture grown on an absorbing substrate, the lower transparent window layer may be made thick (>100 /tm), and the absorbing substrate subsequendy removed to yield a transparent substrate device. [Pg.116]

Material Second harmonic generation coefficients, pm/V Transparency window, nm... [Pg.138]

Instrumental Interface. Gc/fdr instmmentation has developed around two different types of interfacing. The most common is the on-the-fly or flow cell interface in which gc effluent is dkected into a gold-coated cell or light pipe where the sample is subjected to infrared radiation (see Infrared and raman spectroscopy). Infrared transparent windows, usually made of potassium bromide, are fastened to the ends of the flow cell and the radiation is then dkected to a detector having a very fast response-time. In this light pipe type of interface, infrared spectra are generated by ratioing reference scans obtained when only carrier gas is in the cell to sample scans when a gc peak appears. [Pg.402]

Figure 4.29. Sample assembly for optical shock temperature measurements. The sample consists of a metal film deposited on a transparent substrate which serves as both an anvil and a transparent window through which thermal radiation is emitted. Rapid compression of gases and surface irregularities at the interface between the sample film and the driver produce very high temperatures in this region. The bottom portion of the figure illustrates the thermal distribution across through the assembly. (After Bass et al. (1987).)... Figure 4.29. Sample assembly for optical shock temperature measurements. The sample consists of a metal film deposited on a transparent substrate which serves as both an anvil and a transparent window through which thermal radiation is emitted. Rapid compression of gases and surface irregularities at the interface between the sample film and the driver produce very high temperatures in this region. The bottom portion of the figure illustrates the thermal distribution across through the assembly. (After Bass et al. (1987).)...
The initial use was as a blow moulded vessel for vegetable oil candles. However, because of its biodegradability it is of interest for applications where paper and plastics materials are used together and which can, after use, be sent into a standard paper recycling process. Instances include blister packaging (the compound is transparent up to 3 mm in thickness), envelopes with transparent windows and clothes point-of-sale packaging. [Pg.627]

The IR spectra of silicon oxides, in the framework region mode, is dominated by a strong absorption around 1000 cm due the anti-symmetric stretching of the Si - 0 - Si unit (Raman inactive mode) and by a less intense absorption around 800cm due the symmetric stretching of the Si-O-Si unit (Raman active mode). In the transparency window between these two modes, the IR spectra of TS-1 shows an additional absorption band located at 960 cm ... [Pg.45]

The discharge compartment is mechanically separated from the ionization chamber by an optically transparent window made of setal fluoride. The effluent from the column passes through the themostated ionization chamber and between two electrodes, positioned at opposite ends of the chamber. Detectors with ionization chamber volumes of 40 and 175 microliters are available for use with capillary columns and of 175 and 225 microliters for packed columns. An electric field is applied between the electrodes to collect the ions formed (or electrons, if preferred) and the current amplified by a precision electrometer. It has been shown that careful thermostating of the detector is required to reduce baseline drift [107,109]. [Pg.654]

The flow-cell interface in HPLC-FTIR, first reported in 1975 [492], is the most straightforward. Flow-cells consist of two IR-transparent windows (KBr for... [Pg.490]

In solvent-elimination LC-FTIR, basically three types of substrates and corresponding IR modes can be discerned, namely, powder substrates for diffuse reflectance (DRIFT) detection, metallic mirrors for reflection-absorption (R-A) spectrometry, and IR-transparent windows for transmission measurements [500]. The most favourable solvent-elimination LC-FTIR results have been obtained with IR-transparent deposition substrates that allow straightforward transmission measurements. Analyte morphology and/or transformation should always be taken into consideration during the interpretation of spectra obtained by solvent-elimination LC-FTIR. Dependent on the type of substrate and/or size of the deposited spots, often special optics such as a (diffuse) reflectance unit, a beam condenser or an FITR microscope are used to scan the deposited substances (typical diameter of the FITR beam, 20 pm). [Pg.492]

On account of their particularly extensive delocalized 7r-systems, MPs have received comparatively more attention for their cubic, as opposed to quadratic, NLO properties. From the viewpoint of practical applications, such complexes (and also metallophthalocyanines and other closely related compounds) are of major interest for OL due to their tendency to exhibit RSA behavior. These materials are particularly well suited in this regard because they often exhibit strongly absorbing, long-lived triplet excited states as well as reasonably wide transparency windows over the visible region of interest between the intense B- and Q-bands. [Pg.639]

External reflectance. The most commonly applied in situ IR techniques involve the external reflectance approach. These methods seek to minimise the strong solvent absorption by simply pressing a reflective working electrode against the IR transparent window of the electrochemical cell. The result is a thin layer of electrolyte trapped between electrode and window usually 1 to 50 pm. A typical thin layer cell is shown in Figure 2.40. [Pg.100]

Only one example will be given. It concerns a specific form of stray light that is observed when the entrance face of the CCD is protected by a transparent window. This situation arises mostly for cooled CCDs. A small fraction of the measured light is reflected off the surface of the CCD chip, hits the window, and bounces back toward another pixel of the CCD chip (Fig. 5). So the reading on the first pixel is lowered and that on the second is increased, the overall effect distorting the tme distribution in intensity. [Pg.98]

Detectors for quantitative measurement of X-ray absorption spectra must measure the flux (photons s-1) of the X-ray beam. Ionization chambers consisting of X-ray transparent windows on each end of a chamber holding an inert gas work... [Pg.69]

To minimize absorption from the solution, optical thin layer cells have been designed. The working electrode has the shape of a disc, and is mounted closely behind an IR-transparent window. For experiments in aqueous solutions the intervening layer is about 0.2 to 2 ftm thick. Since the solution layer in front of the working electrode is thin, its resistance is high this increases the time required for double-layer charging - time constants of the order of a few milliseconds or longer are common - and may create problems with a nonuniform potential distribution. [Pg.203]

A great advantage of infrared spectroscopy is that the technique can be used to study catalysts in situ. Several cells for in situ investigations have been described in the literature [4, 5]. The critical point is the construction of infrared-transparent windows that withstand high temperatures and pressures. [Pg.224]

The sample is dissolved in 1-5 % of the solvent and it is then placed in a solution cell consisting of transparent windows of alkali metal halides. A second cell containing pure solvent is then placed in the path of reference beam to cancel out solvent interferences. [Pg.239]

Materials used for transparent windows are clear PVC, Plexiglas (polymethylmethacrylate, PMMA) and sapphire. PMMA shows a good transparency in the visible and the IR, it is easily machinable, and stable at low HF concentrations. In concentrated HF (>10%), however, it becomes opaque after the initial contact. Clear PVC, which is of lower transmission coefficient than PMMA, is therefore preferable for high HF concentrations. [Pg.16]

Detectors for quantitative measurement of X-ray absorption spectra must measure the flux (photons s of the X-ray beam. Ionization chambers consisting of X-ray transparent windows on each end of a chamber holding an inert gas work well as transmission detectors for concentrated samples. For transmission detectors, ln(/o//) is proportional to the absorption coefficient of the absorbing atom, p (/o = incident X-ray photon intensity, /= transmitted intensity), according to Beer s Law ... [Pg.80]


See other pages where Transparency window is mentioned: [Pg.1948]    [Pg.380]    [Pg.415]    [Pg.282]    [Pg.116]    [Pg.117]    [Pg.107]    [Pg.249]    [Pg.375]    [Pg.82]    [Pg.116]    [Pg.242]    [Pg.339]    [Pg.124]    [Pg.450]    [Pg.477]    [Pg.37]    [Pg.384]    [Pg.96]    [Pg.242]    [Pg.77]    [Pg.391]    [Pg.390]    [Pg.418]    [Pg.125]    [Pg.606]    [Pg.44]    [Pg.45]    [Pg.465]    [Pg.363]    [Pg.46]   
See also in sourсe #XX -- [ Pg.105 ]

See also in sourсe #XX -- [ Pg.200 , Pg.223 , Pg.271 ]




SEARCH



Semi-Transparent Polymer Solar Cells for Power Generating Window Applications

Transparency

Transparency Transparent

Transparent aerogel windows

Window material electromagnetic transparency rang

Window of transparency

© 2024 chempedia.info