Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition-state theory, general

Flere, we shall concentrate on basic approaches which lie at the foundations of the most widely used models. Simplified collision theories for bimolecular reactions are frequently used for the interpretation of experimental gas-phase kinetic data. The general transition state theory of elementary reactions fomis the starting point of many more elaborate versions of quasi-equilibrium theories of chemical reaction kinetics [27, M, 37 and 38]. [Pg.774]

Finally, the generalization of the partition function q m transition state theory (equation (A3.4.96)) is given by... [Pg.783]

These equations lead to fomis for the thermal rate constants that are perfectly similar to transition state theory, although the computations of the partition functions are different in detail. As described in figrne A3.4.7 various levels of the theory can be derived by successive approximations in this general state-selected fomr of the transition state theory in the framework of the statistical adiabatic chaimel model. We refer to the literature cited in the diagram for details. [Pg.783]

Poliak E 1990 Variational transition state theory for activated rate processes J. Chem. Phys. 93 1116 Poliak E 1991 Variational transition state theory for reactions in condensed phases J. Phys. Chem. 95 533 Frishman A and Poliak E 1992 Canonical variational transition state theory for dissipative systems application to generalized Langevin equations J. Chem. Phys. 96 8877... [Pg.897]

Returning to the more general expression, in the low temperature limit we find that the transition state theory estimate of the rate is... [Pg.208]

This technique has not been used as widely as transition state theory or trajectory calculations. The accuracy of results is generally similar to that given by pTST. There are a few cases where SACM may be better, such as for the reactions of some polyatomic polar molecules. [Pg.168]

Electrode kinetics lend themselves to treatment usiag the absolute reaction rate theory or the transition state theory (36,37). In these treatments, the path followed by the reaction proceeds by a route involving an activated complex where the element determining the reaction rate, ie, the rate limiting step, is the dissociation of the activated complex. The general electrode reaction may be described as ... [Pg.511]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

The natiue of the rate constants k, can be discussed in terms of transition-state theory. This is a general theory for analyzing the energetic and entropic components of a reaction process. In transition-state theory, a reaction is assumed to involve the formation of an activated complex that goes on to product at an extremely rapid rate. The rate of deconposition of the activated con lex has been calculated from the assumptions of the theory to be 6 x 10 s at room temperature and is given by the expression ... [Pg.199]

The extension to rates draws on the equilibrium assumption of transition state theory to yield the analogous result, with rate constants replacing the equilibrium constants of Eq. (6-96). Kresge has generalized this argument, the result being... [Pg.302]

As such, it could be treated with the Eyring s transition state theory. When stated in general terms, the transition state theory is applicable to any physico-chemical process which is activated by thermal energy [94] ... [Pg.110]

The experimental side of the subject explores the effects of certain variables on the rate constant, especially temperature and pressure. Their variations provide values of the activation parameters. They are the previously mentioned energy of activation, entropy of activation, and so forth. The chemical interpretations that can be realized from the values of the activation parameters will be explored in general terms, but readers must consult the original literature for information about those chemical systems that particularly interest them. On the theoretical side, there is the tremendously powerful transition state theory (TST). We shall consider its origins and some of its implications. [Pg.155]

The description of molecular adsorption is very similar to that of atoms, provided we account for the molecules internal degrees of freedom. Hence we need to consider how these degrees change in going from the gas phase to the transition state of adsorption. The most general form for the rate constant of adsorption in the transition state theory is... [Pg.119]

Hence, according to the transition state theory, adsorption becomes more likely if the molecule in the mobile physisorbed precursor state retains its freedom to rotate and vibrate as it did in the gas phase. Of course, this situation corresponds to minimal entropy loss in the adsorption process. In general, the transition from the gas phase into confinement in two dimensions will always be associated with a loss in entropy and the sticking coefficient is normally smaller than unity. [Pg.120]

Generalized relativstic effective core potentials (GRECP), ab initio calculations, P,T-odd interactions, 253-259 Gene transcription, multiparticle collisions, reactive dynamics, 108-111 Geometric transition state theory, 195-201 Gillespie s algorithm, multiparticle collisions, reactive dynamics, 109-111 Golden Rule approximation, two-pathway... [Pg.281]

The transition state theory provides a useful framework for correlating kinetic data and for codifying useful generalizations about the dynamic behavior of chemical systems. This theory is also known as the activated complex theory, the theory of absolute reaction rates, and Eyring s theory. This section introduces chemical engineers to the terminology, the basic aspects, and the limitations of the theory. [Pg.112]

Holroyd (1977) finds that generally the attachment reactions are very fast (fej - 1012-1013 M 1s 1), are relatively insensitive to temperature, and increase with electron mobility. The detachment reactions are sensitive to temperature and the nature of the liquid. Fitted to the Arrhenius equation, these reactions show very large preexponential factors, which allow the endothermic detachment reactions to occur despite high activation energy. Interpreted in terms of the transition state theory and taking the collision frequency as 1013 s 1- these preexponential factors give activation entropies 100 to 200 J/(mole.K), depending on the solute and the solvent. [Pg.351]

Y. 1. Dakhnovskii and A. A. Ovchinnikov, The transition-state theory and generalized... [Pg.96]

Second, in deriving Equation 16.2 from transition state theory, it is necessary to assume that the overall reaction proceeds on a molecular scale as a single elementary reaction or a series of elementary reactions (e.g., Lasaga, 1984 Nagy et al., 1991). In general, the elementary reactions that occur as a mineral dissolves and precipitates are not known. Thus, even though the form of Equation 16.2 is convenient and broadly applicable for explaining experimental results, it is not necessarily correct in the strictest sense. [Pg.236]

As noted in Chapter 16, transition state theory does not require that kinetic rate laws take a linear form, although most kinetic studies have assumed that they do. The rate law for reaction of a mineral A can be expressed in the general nonlinear form,... [Pg.507]

The simplest generalization of free-energy-of-solvation concepts to dynamics in solution is provided by transition state theory. In conventional transition state theory, the rate constant of a chemical reaction at temperature T is given by... [Pg.61]

A well defined theory of chemical reactions is required before analyzing solvent effects on this special type of solute. The transition state theory has had an enormous influence in the development of modern chemistry [32-37]. Quantum mechanical theories that go beyond the classical statistical mechanics theory of absolute rate have been developed by several authors [36,38,39], However, there are still compelling motivations to formulate an alternate approach to the quantum theory that goes beyond a theory of reaction rates. In this paper, a particular theory of chemical reactions is elaborated. In this theoretical scheme, solvent effects at the thermodynamic and quantum mechanical level can be treated with a fair degree of generality. The theory can be related to modern versions of the Marcus theory of electron transfer [19,40,41] but there is no... [Pg.284]

Garret, B. C. and Truhlar, D. G. Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J.Phys.Chem., 83 (1979), 1052-1079... [Pg.349]

A simplified approach is statistical rate theory (transition state theory) with the help of which the overall rate constant k(T) may be obtained from potential energy surface (PES) in a single jump averaging out all of the intermediate details. It is generally not possible to extract microscopic details such as energy-dependent cross sections from conventional kinetics experiments. The preferable approach is to calculate microscopic quantities from some model and then perform the downward averaging for comparison with measured quantities. [Pg.205]


See other pages where Transition-state theory, general is mentioned: [Pg.781]    [Pg.782]    [Pg.893]    [Pg.15]    [Pg.197]    [Pg.203]    [Pg.438]    [Pg.383]    [Pg.683]    [Pg.3]    [Pg.241]    [Pg.424]    [Pg.424]    [Pg.425]    [Pg.129]    [Pg.28]    [Pg.30]    [Pg.126]    [Pg.232]    [Pg.333]    [Pg.305]    [Pg.72]    [Pg.182]    [Pg.341]   
See also in sourсe #XX -- [ Pg.99 , Pg.260 ]




SEARCH



General theory

Generalized theory

Generalized transition state

Generalized transition-state theory

Transition state theory general equations

Variational transition-state theory general potentials

© 2024 chempedia.info