Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition perovskites

Order-disorder component in displacive phase transition perovskites... [Pg.166]

Oxide superconductors have been known since the 1960s. Compounds such as niobium oxide [12034-57-0] NbO, TiO, SrTi02, and AWO, where A is an alkah or alkaline earth cation, were found to be superconducting at 6 K or below. The highest T observed in oxides before 1986 was 13 Kin the perovskite compound BaPb Bi O, x = 0.27. Then in 1986 possible superconductivity at 35 K in the La—Ba—Cu—O compound was discovered (21). The compound composition was later determined to be La 85 A the Y—Ba—Cu—O system was pubUshed in 1987 and reported a transition... [Pg.360]

At the other end of the conduction spectrum, many oxides have conductivities dominated by electron and positive hole contributions to the extent that some, such as Re03, SnOa and tire perovskite LaCrOs have conductivities at the level of metallic conduction. High levels of p-type semiconduction are found in some transition metal perovskites especially those containing alio-valent ions. Thus the lanthairum-based perovskites containing transition metal ions, e.g. LaMOs (M-Cr, Mn, Fe, Co, Ni) have eirlranced p-type semiconduction due to the dependence of the transition metal ion valencies on the ambient... [Pg.161]

Another application is in tire oxidation of vapour mixtures in a chemical vapour transport reaction, the attempt being to coat materials with a tlrin layer of solid electrolyte. For example, a gas phase mixture consisting of the iodides of zirconium and yttrium is oxidized to form a thin layer of ytnia-stabilized zirconia on the surface of an electrode such as one of the lanthanum-snontium doped transition metal perovskites Lai j.Srj.M03 7, which can transmit oxygen as ions and electrons from an isolated volume of oxygen gas. [Pg.242]

The ternary Ge halides, MGeX3 (M = Rb, Cs X = Cl, Br, I) are polymorphic with various distorted perovskite-like (p. 963) structures which reflect the influence of the nonbonding pair of electrons on the Ge" centre. Thus, at room temperature, rhombohedral CsGel3 has three Ge-I at 275 pm and three at 327 pm whereas in the high-temperature cubic form (above 277°C) there are six Ge-I distances at 320 pm as a result of position changes of the Ge atoms (reversible order-disorder transition). Again, RbGel3 has a lemon-yellow, orthorhombic form below —92° an intermediate, bordeaux-red orthorhombic perovskite form (—92° to —52°) a black rhombohedral form (—52° to —29°) and... [Pg.376]

When 0.4 < x < 0.53, an orthorhombic phase is observed in the AgxNb02+xFi.x system. This phase undergoes a phase transition at 900°C that leads to the formation of a tetragonal phase, which crystallizes in a tetragonal tungsten bronze-type structure with cell parameters a = 12.343 and c = 3.905 A. When 0.82 < x < 1, solid solutions based on AgNb03 were found, which crystallize in a perovskite-type structure. [Pg.103]

The relatively high cost and lack of domestic supply of noble metals has spurred considerable efforts toward the development of nonnoble metal catalysts for automobile exhaust control. A very large number of base metal oxides and mixtures of oxides have been considered, especially the transition metals, such as copper, chromium, nickel, manganese, cobalt vanadium, and iron. Particularly prominent are the copper chromites, which are mixtures of the oxides of copper and chromium, with various promoters added. These materials are active in the oxidation of CO and hydrocarbons, as well as in the reduction of NO in the presence of CO (55-59). Rare earth oxides, such as lanthanum cobaltate and lanthanum lead manganite with Perovskite structure, have been investigated for CO oxidation, but have not been tested and shown to be sufficiently active under realistic and demanding conditions (60-63). Hopcalities are out-... [Pg.79]

F can he suppressed hy the high site symmetry of the central atom In many perovskite-like structures of the ABO3 type the lone pair of the B-cat-ion leads not to a structural distortion. In CsPbF3 under ambient conditions no lone-pair activity observed [27], but upon cooling a phase transition is observed that leads to less symmetrical surrounding of Pb by fluoride [28]. [Pg.17]

Catalysts include oxides, mixed oxides (perovskites) and zeolites [3]. The latter, transition metal ion-exchanged systems, have been shown to exhibit high activities for the decomposition reaction [4-9]. Most studies deal with Fe-zeolites [5-8,10,11], but also Co- and Cu-systems exhibit high activities [4,5]. Especially ZSM-5 catalysts are quite active [3]. Detailed kinetic studies, and those accounting for the influence of other components that may be present, like O2, H2O, NO and SO2, have hardly been reported. For Fe-zeolites mainly a first order in N2O and a zero order in O2 is reported [7,8], although also a positive influence of O2 has been found [11]. Mechanistic studies mainly concern Fe-systems, too [5,7,8,10]. Generally, the reaction can be described by an oxidation of active sites, followed by a removal of the deposited oxygen, either by N2O itself or by recombination, eqs. (2)-(4). [Pg.641]

As a contradistinction to the relatively simple case of AI2O3 Cr(III) where the color is due to a metal-centred electronic transition, we mention now on one hand the fact that the Cr(III) ion colors many transition-metal oxides brown (e.g. rutile Ti02 or the perovskite SrTi03 [15]), and on the other hand the fact that the color of blue sapphire (AI2O3 Fe, Ti [16]) is not simply due to a metal-centred transition. By way of illustration Fig. 1 shows the diffuse reflection spectrum of SrTiOj and SrTi03 Cr(III) [17], and Fig. 2 the absorption spectrum of Al203 Ti(III) and Al203 Ti(III), Fe(III) [18]. It has been shown that these colors are due to MMCT transitions and cannot simply be described by metal-centred transitions [19],... [Pg.156]

Surface reconstruction has been earlier observed and reported in the literature [116]. Sequential reductive and oxidative thermal treatment usually leads to bulk transition from CoOx + La203 to LaCo03, respectively. On the other hand, the restoration of the perovskite structure is not observed under severe conditions at higher temperature. In those temperature conditions, the sintering of Co crystallites leads to irreversible redox cycle with the preferential formation of Co304 under lean conditions. [Pg.317]

O Connell M, Norman AK, Huttermann CF, Morris MA (1999) Catalytic oxidation over lanthanum-transition metal perovskite materials. Catal Today 47 123-132... [Pg.312]

Figure 11.6 Views of perovskite crystal structure. Top—conventional cubic unit cell white circles = oxygen black circle = transition metal gray circles = alkali or alkaline earth metal. Bottom—extended unit cell to show the cage formed by the oxygen octa-hedra. Adapted from Bragg et al. (1965). Figure 11.6 Views of perovskite crystal structure. Top—conventional cubic unit cell white circles = oxygen black circle = transition metal gray circles = alkali or alkaline earth metal. Bottom—extended unit cell to show the cage formed by the oxygen octa-hedra. Adapted from Bragg et al. (1965).
Figure 11.7 Dependence of the hardnesses of some transition metal-rhodium-boron perovskites on their d-electron densities. Figure 11.7 Dependence of the hardnesses of some transition metal-rhodium-boron perovskites on their d-electron densities.
Alonso, J. A., Martinez-Lopez, M. J., Casais, M. T., Martinez, J. L., Demaseau, G., Largeteau, A., Garcia-Munoz, J. L., Munoz, A., Femandez-Diaz, M. T., High-pressure preparation, crystal structure, magnetic properties, and phase transitions in GdNi03 and DyNiOs perovskites, Chem. Mater. 11, 2463-2469 (1999). [Pg.508]

Zener, C. 1951. Interaction between the (/-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Physical Review 82 403-405. [Pg.239]

Oxides play many roles in modem electronic technology from insulators which can be used as capacitors, such as the perovskite BaTiOs, to the superconductors, of which the prototype was also a perovskite, Lao.sSro CutT A, where the value of x is a function of the temperature cycle and oxygen pressure which were used in the preparation of the material. Clearly the chemical difference between these two materials is that the capacitor production does not require oxygen partial pressure control as is the case in the superconductor. Intermediate between these extremes of electrical conduction are many semiconducting materials which are used as magnetic ferrites or fuel cell electrodes. The electrical properties of the semiconductors depend on the presence of transition metal ions which can be in two valence states, and the conduction mechanism involves the transfer of electrons or positive holes from one ion to another of the same species. The production problem associated with this behaviour arises from the fact that the relative concentration of each valence state depends on both the temperature and the oxygen partial pressure of the atmosphere. [Pg.236]

If the pair of A atoms at the boundaries of the perovskite-like sheets in the Ruddleston-Popper phases are replaced with just one A atom, the series of phases takes the formula A (A iB 03 +i), where A and A are large ions, typically a (+1/+3) pairing, and B is a medium-sized transition-metal ion, typically Nb5+. These materials are called Dion-Jacobson phases. The majority of examples synthesized to date are of the n = 2 phase, typified by KLaNb207, CsBiNb207, and so on (Fig. 4.29). A few examples of the n = 3 phase are also known, including CsCa2Nb3Oio-... [Pg.182]

The same analysis can be applied to compounds with a more complex formula. For example, the oxide LaCoCL, which adopts the cubic perovskite structure, usually shows a large positive Seebeck coefficient, of the order of +700 jjlV K-1, when prepared in air (Hebert et al., 2007). This indicates that there are holes present in the material. The La ions have a fixed valence, La3+, hence the presence of holes must be associated with the transition-metal ion present. Previous discussion suggests that LaCo03 has become slightly oxidized to LaCoCL+j, and contains a population of Co4+ ions (Co3+ + h or Coc0)- Each added oxygen ion will generate two holes, equivalent to two Co4+ ... [Pg.309]

It should be mentioned that oxygen vacancies are often formed in the perovskite-type structure ABO3 in cases where the B atom is a transition metal that readily exists in more than one oxidation state. [Pg.105]


See other pages where Transition perovskites is mentioned: [Pg.223]    [Pg.223]    [Pg.1757]    [Pg.2205]    [Pg.2219]    [Pg.344]    [Pg.357]    [Pg.360]    [Pg.236]    [Pg.236]    [Pg.245]    [Pg.445]    [Pg.58]    [Pg.197]    [Pg.474]    [Pg.159]    [Pg.282]    [Pg.216]    [Pg.225]    [Pg.261]    [Pg.236]    [Pg.245]    [Pg.42]    [Pg.279]    [Pg.406]    [Pg.440]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Late transition metal-containing perovskites

Perovskites, crystal structure transitions

Perovskites, phase transitions

Transition Metal Ions cubic perovskites with

Transition metal oxides double perovskites

Transition perovskite, reducing process

Vibronic transitions ordered perovskites

© 2024 chempedia.info