Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals water

Table 3.15 Comparison of the binding constants (log Kn) of cyclam and tetramethyl cyclam for various transition metals (water, 25°C).26... Table 3.15 Comparison of the binding constants (log Kn) of cyclam and tetramethyl cyclam for various transition metals (water, 25°C).26...
Iso- and heteropoly anions of the early transition metals and model systems for applications in heterogeneous and homogeneous catalysis systems transition metals - water... [Pg.3]

Using the improved SERS activity of core-shell nanoparticles, they have been able to obtain SERS signal from water molecules with a small Raman cross section that is hitherto impractical to study on transition metals. Water molecules immediately adjacent to the metal surfaces can directly affect the electrochemical processes and reactions. Therefore, understanding of water configuration and how the water is interacting with the metal surface and... [Pg.287]

The experimental data and arguments by Trassatti [25] show that at the PZC, the water dipole contribution to the potential drop across the interface is relatively small, varying from about 0 V for An to about 0.2 V for In and Cd. For transition metals, values as high as 0.4 V are suggested. The basic idea of water clusters on the electrode surface dissociating as the electric field is increased has also been supported by in situ Fourier transfomr infrared (FTIR) studies [26], and this model also underlies more recent statistical mechanical studies [27]. [Pg.594]

We have already seen that in the aquo-complex which is usually formed when a simple transition metal salt dissolves in water, the... [Pg.366]

In an aquo-complex, loss of protons from the coordinated water molecules can occur, as with hydrated non-transition metal ions (p. 45). To prevent proton loss by aquo complexes, therefore, acid must usually be added. It is for these conditions that redox potentials in Chapter 4 are usually quoted. Thus, in acid solutions, we have... [Pg.367]

First, the use of water limits the choice of Lewis-acid catalysts. The most active Lewis acids such as BFj, TiQ4 and AlClj react violently with water and cannot be used However, bivalent transition metal ions and trivalent lanthanide ions have proven to be active catalysts in aqueous solution for other organic reactions and are anticipated to be good candidates for the catalysis of aqueous Diels-Alder reactions. [Pg.48]

Pentacarbonyliron Acetic acid, nitric oxide, transition metal halides, water, zinc... [Pg.1210]

Properties. A suimnaiy of the chemical and physical properties of alkah-metal and ammonium fLuoroborates is given in Tables 2 and 3. Chemically these compounds differ from the transition-metal fLuoroborates usually separating in anhydrous form. This group is very soluble in water, except for the K, Rb, and Cs salts which ate only slighdy soluble. Many of the soluble salts crystallize as hydrates. [Pg.165]

The physical and chemical properties are less well known for transition metals than for the alkaU metal fluoroborates (Table 4). Most transition-metal fluoroborates are strongly hydrated coordination compounds and are difficult to dry without decomposition. Decomposition frequently occurs during the concentration of solutions for crysta11i2ation. The stabiUty of the metal fluorides accentuates this problem. Loss of HF because of hydrolysis makes the reaction proceed even more rapidly. Even with low temperature vacuum drying to partially solve the decomposition, the dry salt readily absorbs water. The crystalline soflds are generally soluble in water, alcohols, and ketones but only poorly soluble in hydrocarbons and halocarbons. [Pg.167]

A modification of the direct process has recentiy been reported usiag a ckculating reactor of the Buss Loop design (11). In addition to employing lower temperatures, this process is claimed to have lower steam and electricity utihty requirements than a more traditional reactor (12) for the direct carbonylation, although cooling water requirements are higher. The reaction can also be performed ia the presence of an amidine catalyst (13). Related processes have been reported that utilize a mixture of methylamines as the feed, but require transition-metal catalysts (14). [Pg.513]

Reaction with Meta/ Oxides. The reaction of hydrogen chloride with the transition-metal oxides at elevated temperatures has been studied extensively. Fe202 reacts readily at temperatures as low as 300°C to produce FeCl and water. The heavier transition-metal oxides require a higher reaction temperature, and the primary reaction product is usually the corresponding oxychlorides. Similar reactions are reported for many other metal oxides, such as Sb202, BeO, AI2O2, andTi02, which lead to the formation of relatively volatile chlorides or oxychlorides. [Pg.444]

Alcohol autoxidation is carried out in the range of 70—160°C and 1000—2000 kPa (10—20 atm). These conditions maintain the product and reactants as Hquids and are near optimum for practical hydrogen peroxide production rates. Several additives including acids, nitriles, stabHizers, and sequestered transition-metal oxides reportedly improve process economics. The product mixture, containing hydrogen peroxide, water, acetone, and residual isopropyl alcohol, is separated in a wiped film evaporator. The organics and water are taken overhead and further refined to recover by-product acetone and the... [Pg.476]

Hydrogen peroxide, in combination with reducing agents (transition metals), also is used in those appHcations where its high water- and low od-solubiHty is not a problem or is easily overcome. [Pg.228]

Alkali or alkaline-earth salts of both complexes are soluble in water (except for Ba2[Fe(CN)g]) but are insoluble in alcohol. The salts of hexakiscyanoferrate(4—) are yellow and those of hexakiscyanoferrate(3—) are mby red. A large variety of complexes arise when one or more cations of the alkah or alkaline-earth salts is replaced by a complex cation, a representative metal, or a transition metal. Many salts have commercial appHcations, although the majority of industrial production of iron cyanide complexes is of iron blues such as Pmssian Blue, used as pigments (see Pigments, inorganic). Many transition-metal salts of [Fe(CN)g] have characteristic colors. Addition of [Fe(CN)g] to an unknown metal salt solution has been used as a quaUtative test for those transition metals. [Pg.434]

Basic oxides of metals such as Co, Mn, Fe, and Cu catalyze the decomposition of chlorate by lowering the decomposition temperature. Consequendy, less fuel is needed and the reaction continues at a lower temperature. Cobalt metal, which forms the basic oxide in situ, lowers the decomposition of pure sodium chlorate from 478 to 280°C while serving as fuel (6,7). Composition of a cobalt-fueled system, compared with an iron-fueled system, is 90 wt % NaClO, 4 wt % Co, and 6 wt % glass fiber vs 86% NaClO, 4% Fe, 6% glass fiber, and 4% BaO. Initiation of the former is at 270°C, compared to 370°C for the iron-fueled candle. Cobalt hydroxide produces a more pronounced lowering of the decomposition temperature than the metal alone, although the water produced by decomposition of the hydroxide to form the oxide is thought to increase chlorine contaminate levels. Alkaline earths and transition-metal ferrates also have catalytic activity and improve chlorine retention (8). [Pg.485]

Complex Ion Formation. Phosphates form water-soluble complex ions with metallic cations, a phenomenon commonly called sequestration. In contrast to many complexing agents, polyphosphates are nonspecific and form soluble, charged complexes with virtually all metallic cations. Alkali metals are weakly complexed, but alkaline-earth and transition metals form more strongly associated complexes (eg, eq. 16). Quaternary ammonium ions are complexed Htde if at all because of their low charge density. The amount of metal ion that can be sequestered by polyphosphates generally increases... [Pg.339]

The oxidation reaction between butadiene and oxygen and water in the presence of CO2 or SO2 produces 1,4-butenediol. The catalysts consist of iron acetylacetonate and LiOH (99). The same reaction was also observed at 90°C with Group (VIII) transition metals such as Pd in the presence of I2 or iodides (100). The butenediol can then be hydrogenated to butanediol [110-63-4]. In the presence of copper compounds and at pH 2, hydrogenation leads to furan (101). [Pg.343]


See other pages where Transition metals water is mentioned: [Pg.153]    [Pg.153]    [Pg.81]    [Pg.131]    [Pg.257]    [Pg.2902]    [Pg.46]    [Pg.367]    [Pg.389]    [Pg.117]    [Pg.102]    [Pg.382]    [Pg.2]    [Pg.318]    [Pg.40]    [Pg.512]    [Pg.335]    [Pg.336]    [Pg.23]    [Pg.58]    [Pg.56]    [Pg.286]    [Pg.379]    [Pg.412]    [Pg.114]    [Pg.192]    [Pg.378]    [Pg.141]    [Pg.209]    [Pg.289]    [Pg.464]    [Pg.349]    [Pg.149]   
See also in sourсe #XX -- [ Pg.2 , Pg.7 , Pg.53 ]




SEARCH



Transition metal cations water exchange

Transition metal water-exchange reactions

Transition metals water orbitals

Water exchange on main group and d-transition metal ions

Water exchange on-transition metal ions

Water-soluble sensors for transition metals ferrocene polyazamacrocycles

© 2024 chempedia.info