Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals, trace

Butylatedhydroxytoluene or 2,6-di-tert-butyl-4-methylphenol is frequently added as an antioxidizing agent to prevent catalytic oxidation induced by transition metal traces present in certain raw materials. Its chemical formula is... [Pg.121]

The formation of MAHs in soft drinks and some foods can be explained by decarboxylation of aromatic acids, whether natural or used as additives. The second case corresponds to the formation of benzene in soft drinks and fermented vegetables preserved with benzoic acid, which in the presence of ascorbic acid can yield benzene by decarboxylation. The reaction is catalysed by traces of transition metals. Traces of benzene found in cranberry and mango products that were not preserved with benzoic acid were due to a higher content of naturally present benzoic acid. [Pg.942]

The solution chemistiry of transition metal trace elements is dominated by their tendency to undergo hydrolysis which, in the context of metal ion chemistry, can be viewed as the stepwise removal of protons from hydrate... [Pg.404]

Eithei oxidation state of a transition metal (Fe, Mn, V, Cu, Co, etc) can activate decomposition of the hydiopeioxide. Thus a small amount of tiansition-metal ion can decompose a laige amount of hydiopeioxide. Trace transition-metal contamination of hydroperoxides is known to cause violent decompositions. Because of this fact, transition-metal promoters should never be premixed with the hydroperoxide. Trace contamination of hydroperoxides (and ketone peroxides) with transition metals or their salts must be avoided. [Pg.228]

Potassium removal is required because the presence of potassium during electrolysis reportedly promotes the formation of the a-Mn02 phase which is nonbattery active. Neutralization is continued to a pH of approximately 4.5, which results in the precipitation of additional trace elements and, along with the ore gangue, can be removed by filtration. Pinal purification of the electrolyte Hquor by the addition of sulfide salts results in the precipitation of all nonmanganese transition metals. [Pg.513]

The number of branches in HDPE resins is low, at most 5 to 10 branches per 1000 carbon atoms in the chain. Even ethylene homopolymers produced with some transition-metal based catalysts are slightly branched they contain 0.5—3 branches per 1000 carbon atoms. Most of these branches are short, methyl, ethyl, and -butyl (6—8), and their presence is often related to traces of a-olefins in ethylene. The branching degree is one of the important stmctural features of HDPE. Along with molecular weight, it influences most physical and mechanical properties of HDPE resins. [Pg.379]

Peroxohydrates are usually made by simple crystallization from solutions of salts or other compounds in aqueous hydrogen peroxide. They are fairly stable under ambient conditions, but traces of transition metals catalyze the Hberation of oxygen from the hydrogen peroxide. Early work on peroxohydrates has been reviewed (92). [Pg.96]

With most transition metals, eg, Cu, Co, and Mn, both valence states react with hydroperoxides via one electron transfer (eqs. 11 andl2). Thus, a small amount of transition-metal ion can decompose a large amount of hydroperoxide and, consequendy, inadvertent contamination of hydroperoxides with traces of transition-metal impurities should be avoided. [Pg.104]

Metal-Catalyzed Oxidation. Trace quantities of transition metal ions catalyze the decomposition of hydroperoxides to radical species and greatiy accelerate the rate of oxidation. Most effective are those metal ions that undergo one-electron transfer reactions, eg, copper, iron, cobalt, and manganese ions (9). The metal catalyst is an active hydroperoxide decomposer in both its higher and its lower oxidation states. In the overall reaction, two molecules of hydroperoxide decompose to peroxy and alkoxy radicals (eq. 5). [Pg.223]

The purity of ionic liquids is a key parameter, especially when they are used as solvents for transition metal complexes (see Section 5.2). The presence of impurities arising from their mode of preparation can change their physical and chemical properties. Even trace amounts of impurities (e.g., Lewis bases, water, chloride anion) can poison the active catalyst, due to its generally low concentration in the solvent. The control of ionic liquid quality is thus of utmost importance. [Pg.278]

Of the ten trace elements known to be essential to human nutrition, seven are transition metals. For the most part, transition metals in biochemical compounds are present as complex ions, chelated by organic ligands. You will recall (Chapter 15) that hemoglobin has such a structure with Fe2+ as the central ion of the complex. The Co3+ ion... [Pg.550]

The strained bicyclic carbapenem framework of thienamycin is the host of three contiguous stereocenters and several heteroatoms (Scheme 1). Removal of the cysteamine side chain affixed to C-2 furnishes /J-keto ester 2 as a possible precursor. The intermolecular attack upon the keto function in 2 by a suitable thiol nucleophile could result in the formation of the natural product after dehydration of the initial tetrahedral adduct. In a most interesting and productive retrosynthetic maneuver, intermediate 2 could be traced in one step to a-diazo keto ester 4. It is important to recognize that diazo compounds, such as 4, are viable precursors to electron-deficient carbenes. In the synthetic direction, transition metal catalyzed decomposition of diazo keto ester 4 could conceivably furnish electron-deficient carbene 3 the intermediacy of 3 is expected to be brief, for it should readily insert into the proximal N-H bond to... [Pg.250]

The specific feature of polymerization as a catalytic reaction is that the composition and structure of the polymer molecule formed show traces of the mechanism of the processes proceeding in the coordination sphere of the transition metal ion to which a growing polymer chain is bound. It offers additional possibilities for studying the intimate mechanism of this heterogeneous catalytic reaction. [Pg.213]

Field Stabilization Energies, or LFSE s. The variation in LFSE across the transition-metal series is shown graphically in Fig. 8-6. It is no accident, of course, that the plots intercept the abscissa for d, d and ions, for that is how the LFSE is defined. Ions with all other d configurations are more stable than the d, d or d ions, at least so far as this one aspect is concerned. For the high-spin cases, we note a characteristic double-hump trace and note that we expect particular stability conferred upon d and d octahedral ions. For the low-spin series, we observe a particularly stable arrangement for ions. More will be said about these systems in the next chapter. [Pg.151]

The other product (VI) is formed in traces. These reactions form Au-Ru Au-Os , Ag-Fe and Ag-Rh clusters and compounds with bridged Ag— and Au—bonds. Syntheses of cluster compounds containing Cu, Ag or Au and other transition metals are available . [Pg.539]

As pure elements, almost all the transition metals are solids that conduct heat and electricity and are malleable and ductile. Although they share these general properties, transition metals display variations in other properties that can be traced to their different numbers of valence electrons. [Pg.1430]

In 1954, Ziegler and coworkers observed that the course of the reaction of ethene with trialkylalanes was drastically altered by the presence of traces of nickel salts [25]. Instead of low molecular weight polyethylene, the only product was 1-butene. Obviously, the transition metal strongly supports the displacement reaction of the alkyl group bonded to the aluminum by ethylene, a reaction which can be formally described as transfer of a hydridoalane. [Pg.51]

Caeruloplasmin (Cp) is an acute phase glycoprotein with a copper transport function. At least 90% of total plasma copper is bound to Cp with the remaining 10% associated with albumin, histidine and small peptides. Lipid peroxidation requires the presence of trace amounts of transition metals and the copper-containing active site of Cp endows it with antioxidant capacity... [Pg.102]

The trace of D vanishes when dipole coupling between paramagnetic centers determines the ZFS, since dipole interaction is traceless. A typical example is the ZFS of triplets arising from coupled radical pairs, for which SOC is negligible. For transition metal ions in contrast, SOC is the leading contribution to ZFS and the trace of Zl in general has finite values. [Pg.124]


See other pages where Transition metals, trace is mentioned: [Pg.761]    [Pg.404]    [Pg.404]    [Pg.761]    [Pg.404]    [Pg.404]    [Pg.512]    [Pg.114]    [Pg.342]    [Pg.157]    [Pg.202]    [Pg.378]    [Pg.154]    [Pg.465]    [Pg.662]    [Pg.301]    [Pg.550]    [Pg.345]    [Pg.188]    [Pg.321]    [Pg.19]    [Pg.123]    [Pg.470]    [Pg.1480]    [Pg.30]    [Pg.45]    [Pg.284]    [Pg.9]    [Pg.80]    [Pg.14]    [Pg.41]    [Pg.147]    [Pg.664]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



© 2024 chempedia.info