Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals phase stability

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

Pure metallic cobalt has a soHd-state transition from cph (lower temperatures) to fee (higher temperatures) at approximately 417°C. However, when certain elements such as Ni, Mn, or Ti are added, the fee phase is stabilized. On the other hand, adding Cr, Mo, Si, or W stabilizes the cph phase. Upon fcc-phase stabilization, the energy of crystallographic stacking faults, ie, single-unit cph inclusions that impede mechanical sHp within the fee matrix, is high. [Pg.372]

Another application is in tire oxidation of vapour mixtures in a chemical vapour transport reaction, the attempt being to coat materials with a tlrin layer of solid electrolyte. For example, a gas phase mixture consisting of the iodides of zirconium and yttrium is oxidized to form a thin layer of ytnia-stabilized zirconia on the surface of an electrode such as one of the lanthanum-snontium doped transition metal perovskites Lai j.Srj.M03 7, which can transmit oxygen as ions and electrons from an isolated volume of oxygen gas. [Pg.242]

Unlike nitric oxide, NO, the monomeric radical sulfur nitride, NS, is only known as a short-lived intermediate in the gas phase. Nevertheless the properties of this important diatomic molecule have been thoroughly investigated by a variety of spectroscopic and other physical techniques (Section 5.2.1). The NS molecule is stabilized by coordination to a transition metal and a large number of complexes, primarily with metals from Groups 6, 7, 8 and 9, are known. Several detailed reviews of the topic have been published. ... [Pg.123]

Monomeric thiazyl halides NSX (X = F, Cl Br) have been characterized in the gas phase, but oligomerization to cyclic species, e.g., (NSX)3 (X = F, Cl) and (NSF)4, occurs in the condensed phase (Section 8.7). These ligands can be stabilized, however, by coordination to a transition metal. The NSF complexes are conveniently prepared in SO2 (Eq. 1.6) The monomeric fluoride NSF is conveniently generated in situ by thermal decomposition of FC(0)NSF2 or Hg(NSp2)2 (Section 8.2). [Pg.132]

Here, we address the more general question of the relative stability of monomers, dimers and triangular trimers on the (111) surface of FCC transition metals of the same chemical species as a function of the d band filling Nd. All possible atomic configurations of the systems are considered monomers and dimers at sites N and F, triangles with A and B borders at sites N and F (Fig. 4). The d band-filling includes the range of stability of the FCC phase (Nd > 7.5e /atom). The densities of states are obtained from... [Pg.378]

Perspectives for fabrication of improved oxygen electrodes at a low cost have been offered by non-noble, transition metal catalysts, although their intrinsic catalytic activity and stability are lower in comparison with those of Pt and Pt-alloys. The vast majority of these materials comprise (1) macrocyclic metal transition complexes of the N4-type having Fe or Co as the central metal ion, i.e., porphyrins, phthalocyanines, and tetraazaannulenes [6-8] (2) transition metal carbides, nitrides, and oxides (e.g., FeCjc, TaOjcNy, MnOx) and (3) transition metal chalcogenide cluster compounds based on Chevrel phases, and Ru-based cluster/amorphous systems that contain chalcogen elements, mostly selenium. [Pg.310]

Electronic transitions like insulator-metal transitions, magnetic order-disorder transitions, spin transitions and Schottky-type transitions (due to crystal field splitting in the ground state in/element-containing compounds) profoundly influence the phase stability of compounds. A short description of the main characteristics of these transitions will be given below, together with references to more thorough treatments. [Pg.256]

Recently, Dupont and coworkers described the use of room-temperature imi-dazolium ionic liquids for the formation and stabilization of transition-metal nanoparticles. The potential interest in the use of ionic liquids is to promote a bi-phasic organic-organic catalytic system for a recycling process. The mixture forms a two-phase system consisting of a lower phase which contains the nanocatalyst in the ionic liquid, and an upper phase which contains the organic products. Rhodium and iridium [105], platinum [73] or ruthenium [74] nanoparticles were prepared from various salts or organometallic precursors in dry 1-bu-tyl-3-methylimidazolium hexafluorophosphate (BMI PF6) ionic liquid under hydrogen pressure (4 bar) at 75 °C. Nanoparticles with a mean diameter of 2-3 nm... [Pg.243]

Trends in the electronic structure of the chalcogenide catalysts have proved to be helpful in the design and understanding of the catalyst clusters. During ORR, the molecular oxygen has been found to react with the cluster as a whole, rather than individual metal atoms.177 The overall number of electrons per cluster unit (NEC) in the valence bond has been shown to have a factor in the activity and stability of the cluster catalysts.177,181 The unsubstituted Chevrel phases have a NEC of 20.177,181 Substituting or intercalating other transition metals into the crystal lattice to make ternary or pseudo-binary Chevrel phases allows for the increase of NEC. It has been found that as the NEC approaches 24, the catalytic activity improves.181 Alonso-Vante compiled the results from his previous studies to show the effect of NEC in... [Pg.353]

The enhanced selectivity of the complexed transition metal cation compared to the uncomplexed aqueous form can be expressed as a gain in the stability constant of the adsorbed complex with respect to its stability constant in the solution phase (80). The complex formation reaction and corresponding stability constants of a transition metal cation M with an uncharged ligand L in both the surface (indicated by bars) and solution phase are defined as... [Pg.269]


See other pages where Transition metals phase stability is mentioned: [Pg.129]    [Pg.192]    [Pg.67]    [Pg.479]    [Pg.2902]    [Pg.2]    [Pg.266]    [Pg.213]    [Pg.97]    [Pg.206]    [Pg.167]    [Pg.155]    [Pg.159]    [Pg.24]    [Pg.34]    [Pg.327]    [Pg.331]    [Pg.30]    [Pg.218]    [Pg.234]    [Pg.106]    [Pg.188]    [Pg.154]    [Pg.224]    [Pg.654]    [Pg.19]    [Pg.19]    [Pg.9]    [Pg.296]    [Pg.1396]    [Pg.59]    [Pg.1]    [Pg.19]    [Pg.353]    [Pg.292]    [Pg.74]    [Pg.180]    [Pg.181]    [Pg.299]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Metal phases

Metallic phase

Metallic stabilizers

Metals phase stability

Metals stabilization

Phase stability

Transition metal compounds phase stability

Transition metals stabilization

Transition metals stabilized

Transition stabilization

© 2024 chempedia.info