Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface transition metal ions

It is evident [see Eq. (5), Section II[] that for catalysts of the same or similar composition the number of active centers determined must be consistent with the catalytic activity it can be expected that only in the case of highly active supported catalysts a considerable part of the surface transition metal ions will act as propagation centers. However, the results published by different authors for chromium oxide catalysts are hardly comparable, as the polymerization parameters as a rule were very different, and the absolute polymerization rate was not reported. [Pg.197]

Chemisorption is irreversible adsorption, which suggests valence bonding at specific sites on a surface. Transition metal ions, protein below its isoelectric point (positively charged), and di- and polyvalent cations are prone to chemisorption. [Pg.39]

V. B. Kazansky, V. A. Shvets, M. Y. Kon, V. V. Nikisha, B. N. Shelimov, Spectroscopic study of the elementary reactions in the coordination sphere of the surface transition metal ions and the mechanism of some related catalytic reactions, in J. Hightower (Ed.), Proceedings of the Fifth International Congress on Catalysis, North-Holland, Amsterdam, 1973, p. 1423. [Pg.86]

However, the IR evidence indicates that NO does not show any particular specificity for adsorption on metallic or oxide ions (151, 152, 154) therefore, the assumption of a 1 1 correspondence between adsorbed NO molecules and adsorption centers, as that reported for simple oxides (155) may not give a proper estimate of the number of surface transition-metal ions. Ulla et al. (158) used the poisoning effect of NO adsorption in ethylene hydrogenation at -20°C for the estimation of metallic centers in reduced LaCo03. Active-site concentration was found to be lower by one order of magnitude than the theoretical concentration of metallic cobalt. This was assumed to be due to the fact that only a small fraction of the metallic sites are active for hydrogenation. [Pg.275]

Multilayers of Diphosphates. One way to find surface reactions that may lead to the formation of SAMs is to look for reactions that result in an insoluble salt. This is the case for phosphate monolayers, based on their highly insoluble salts with tetravalent transition metal ions. In these salts, the phosphates form layer stmctures, one OH group sticking to either side. Thus, replacing the OH with an alkyl chain to form the alkyl phosphonic acid was expected to result in a bilayer stmcture with alkyl chains extending from both sides of the metal phosphate sheet (335). When zirconium (TV) is used the distance between next neighbor alkyl chains is - 0.53 nm, which forces either chain disorder or chain tilt so that VDW attractive interactions can be reestablished. [Pg.543]

An important property of the surface behaviour of oxides which contain transition metal ions having a number of possible valencies can be revealed by X-ray induced photoelectron spectroscopy. The energy spectrum of tlrese electrons give a direct measure of the binding energies of the valence electrons on the metal ions, from which the charge state can be deduced (Gunarsekaran et al., 1994). [Pg.125]

It is necessary to note the limitation of the approach to the study of the polymerization mechanism, based on a formal comparison of the catalytic activity with the average oxidation degree of transition metal ions in the catalyst. The change of the activity induced by some factor (the catalyst composition, the method of catalyst treatment, etc.) was often assumed to be determined only by the change of the number of active centers. Meanwhile, the activity (A) of the heterogeneous polymerization catalyst depends not only on the surface concentration of the propagation centers (N), but also on the specific activity of one center (propagation rate constant, Kp) and on the effective catalyst surface (Sen) as well ... [Pg.176]

The specific behavior of surface compounds, being the propagation centers of polymerization catalysts, are mainly determined by two of their features the coordinative insufficiency of the transition metal ion and the presence of the transition metal-carbon bond. [Pg.202]

Electropolymerization is also an attractive method for the preparation of modified electrodes. In this case it is necessary that the forming film is conductive or permeable for supporting electrolyte and substrates. Film formation of nonelectroactive polymers can proceed until diffusion of electroactive species to the electrode surface becomes negligible. Thus, a variety of nonconducting thin films have been obtained by electrochemical oxidation of aromatic phenols and amines Some of these polymers have ligand properties and can be made electroactive by subsequent inincorporation of transition metal ions... [Pg.56]

Considerable interest in the subject of C-H bond activation at transition-metal centers has developed in the past several years (2), stimulated by the observation that even saturated hydrocarbons can react with little or no activation energy under appropriate conditions. Interestingly, gas phase studies of the reactions of saturated hydrocarbons at transition-metal centers were reported as early as 1973 (3). More recently, ion cyclotron resonance and ion beam experiments have provided many examples of the activation of both C-H and C-C bonds of alkanes by transition-metal ions in the gas phase (4). These gas phase studies have provided a plethora of highly speculative reaction mechanisms. Conventional mechanistic probes, such as isotopic labeling, have served mainly to indicate the complexity of "simple" processes such as the dehydrogenation of alkanes (5). More sophisticated techniques, such as multiphoton infrared laser activation (6) and the determination of kinetic energy release distributions (7), have revealed important features of the potential energy surfaces associated with the reactions of small molecules at transition metal centers. [Pg.16]

With the surface ionization source it is generally assumed that the reactant ion internal state distribution is characterized by the source temperature and that the majority of the reactant ions are in their ground electronic state. This contrasts with the uncertainty in reactant state distributions when transition metal ions are generated by electron impact fragmentation of volatile organometallic precursors (10) or by laser evaporation and ionization of solid metal targets (11). Many examples... [Pg.16]

The electron paramagnetic resonance spectrum of transition metal ions has been widely used to interpret the state of these ions in systems of catalytic interest. Major emphasis has been placed on supported chromia because of its catalytic importance in low-pressure ethylene polymerization and other commercial reactions. Earlier work on chromia-alumina catalysts has been reviewed by Poole and Maclver 146). On alumina it appears that the chromium is present in three general forms the S phase, which is isolated Cr3+ on the surface or in the lattice the 0 phase, which is clusters of Cr3+ and the y phase, which is isolated Cr5+ on the surface. The S and 0... [Pg.320]

One of the most promising techniques for studying transition metal ions involves the use of zeolite single crystals. Such crystals offer a unique opportunity to carry out single crystal measurements on a large surface area material. Suitable crystals of the natural large pore zeolites are available, and fairly small crystals of the synthetic zeolites can be obtained. The spectra in the faujasite-type crystals will not be simple because of the magnetically inequivalent sites however, the lines should be sharp and symmetric. Work on Mn2+ in hydrated chabazite has indicated that there is only one symmetry axis in that material 173), and a current study in the author s laboratory on Cu2+ in partially dehydrated chabazite tends to confirm this observation. [Pg.325]

The chapter Electron Spin Resonance in Catalysis by Lunsford was prompted by the extensive activity in this field since the publication of an article on a similar subject in Volume 12 of this serial publication. This chapter is limited to paramagnetic species that are reasonably well defined by means of their spectra. It contains applications of ESR technique to the study of adsorbed atoms and molecules, and also to the evaluation of surface effects. The application of ESR to the determination of the state of transition metal ions in catalytic reactions is also discussed. [Pg.368]

The deposition of mass and charge selected ions onto surfaces is underway but is in its infancy. How do the ions survive the collision with a surface This question has a myriad of answers depending on many variables and will have a future in investigative studies. A soft landing is now a possibility (280) and allows the potential spectroscopic investigation of trapped ions. So far no transition metal ions have been examined using this method but it is only a matter of time. Soft landings via inert gas matrices also have potential in the surface deposition of mass selected clusters. [Pg.419]


See other pages where Surface transition metal ions is mentioned: [Pg.270]    [Pg.3393]    [Pg.3392]    [Pg.278]    [Pg.196]    [Pg.270]    [Pg.3393]    [Pg.3392]    [Pg.278]    [Pg.196]    [Pg.258]    [Pg.449]    [Pg.294]    [Pg.213]    [Pg.332]    [Pg.335]    [Pg.367]    [Pg.248]    [Pg.700]    [Pg.113]    [Pg.273]    [Pg.295]    [Pg.216]    [Pg.15]    [Pg.15]    [Pg.16]    [Pg.42]    [Pg.515]    [Pg.338]    [Pg.422]    [Pg.65]    [Pg.157]    [Pg.163]    [Pg.243]    [Pg.440]    [Pg.311]   
See also in sourсe #XX -- [ Pg.376 ]




SEARCH



Surface ions

Transition ions

Transition metal ions

Transition metal surfaces

© 2024 chempedia.info