Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal state

Bo93 M. T. Bowers, P. R. Kempdr, G. von Helden and P. A. M van Koopen, Gas-Phase Ion Chromatography Transition Metal State... [Pg.5]

Bowers, M.T. Kemper, P.R. von Helden, G. van Koppen, P.A.M., Gas-phase ion chromatography transition metal state selection and carbon cluster formation. Science 1993, 260 (June 4), 1446-1451. [Pg.212]

Plot of the s and of transition metal state-averaged Ionization potentials. The vertical ionization potentials for some common ligands are on the right side. [Pg.404]

Metal derivatives of terminal alkynes, RC2H. Transition metals form complex acetylides (e.g. (M(C = CR) ]- ) often containing the metal in low oxidation states. [Pg.12]

Jahn-TeHer effect The Jahn-Teller theorem states that, when any degenerate electronic slate contains a number of electrons such that the degenerate orbitals are not completely filled, the geometry of the species will change so as to produce non-degenerate orbitals. Particularly applied to transition metal compounds where the state is Cu(II)... [Pg.229]

The composition and chemical state of the surface atoms or molecules are very important, especially in the field of heterogeneous catalysis, where mixed-surface compositions are common. This aspect is discussed in more detail in Chapter XVIII (but again see Refs. 55, 56). Since transition metals are widely used in catalysis, the determination of the valence state of surface atoms is important, such as by ESCA, EXAFS, or XPS (see Chapter VIII and note Refs. 59, 60). [Pg.581]

Simple metals like alkalis, or ones with only s and p valence electrons, can often be described by a free electron gas model, whereas transition metals and rare earth metals which have d and f valence electrons camiot. Transition metal and rare earth metals do not have energy band structures which resemble free electron models. The fonned bonds from d and f states often have some strong covalent character. This character strongly modulates the free-electron-like bands. [Pg.129]

An atom or a molecule with the total spin of the electrons S = 1 is said to be in a triplet state. The multiplicity of such a state is (2.S +1)=3. Triplet systems occur in both excited and ground state molecules, in some compounds containing transition metal ions, in radical pair systems, and in some defects in solids. [Pg.1554]

Wallace C H 1998 The rapid solid-state synthesis of group III and transition metal nitrides at ambient and high pressures PhD Dissertation University of California, Los Angeles... [Pg.1965]

Our intention is to give a brief survey of advanced theoretical methods used to detennine the electronic and geometric stmcture of solids and surfaces. The electronic stmcture encompasses the energies and wavefunctions (and other properties derived from them) of the electronic states in solids, while the geometric stmcture refers to the equilibrium atomic positions. Quantities that can be derived from the electronic stmcture calculations include the electronic (electron energies, charge densities), vibrational (phonon spectra), stmctiiral (lattice constants, equilibrium stmctiires), mechanical (bulk moduli, elastic constants) and optical (absorption, transmission) properties of crystals. We will also report on teclmiques used to study solid surfaces, with particular examples drawn from chemisorption on transition metal surfaces. [Pg.2201]

In the final section, we will survey the different theoretical approaches for the treatment of adsorbed molecules on surfaces, taking the chemisorption on transition metal surfaces, a particularly difficult to treat yet extremely relevant surface problem [1], as an example. Wliile solid state approaches such as DFT are often used, hybrid methods are also advantageous. Of particular importance in this area is the idea of embedding, where a small cluster of surface atoms around the adsorbate is treated with more care than the surroundmg region. The advantages and disadvantages of the approaches are discussed. [Pg.2202]

INORGANIC COMPLEXES. The cis-trans isomerization of a planar square form of a rt transition metal complex (e.g., of Pt " ) is known to be photochemically allowed and themrally forbidden [94]. It was found experimentally [95] to be an inhamolecular process, namely, to proceed without any bond-breaking step. Calculations show that the ground and the excited state touch along the reaction coordinate (see Fig. 12 in [96]). Although conical intersections were not mentioned in these papers, the present model appears to apply to these systems. [Pg.375]

Some transition metal atoms combined with uncharged molecules as ligands (notahiv carbon monoxide. CO) have a formal oxidation state of 0. for example Ni + 4CO Ni"(CO)4. [Pg.362]

The reactivity of the transition metals towards other elements varies widely. In theory, the tendency to form other compounds both in the solid state (for example reactions to form cations) should diminish along the series in practice, resistance to reaction with oxygen (due to formation of a surface layer of oxide) causes chromium (for example) to behave abnormally hence regularities in reactivity are not easily observed. It is now appropriate to consider the individual transition metals. [Pg.369]

In this oxidation state the titanium atom has formally lost its 3d and 4s electrons as expected, therefore, it forms compounds which do not have the characteristics of transition metal compounds, and which indeed show strong resemblances to the corresponding compounds of the lower elements (Si, Ge, Sn, Pb) of Group IV—the group into which Mendeleef put titanium in his original form of the periodic table. [Pg.370]

Copper differs in its chemistry from the earlier members of the first transition series. The outer electronic configuration contains a completely-filled set of d-orbitals and. as expected, copper forms compounds where it has the oxidation state -)-l. losing the outer (4s) electron and retaining all the 3d electrons. However, like the transition metals preceding it, it also shows the oxidation state +2 oxidation states other than -l-l and - -2 are unimportant. [Pg.409]

These elements formed Group IIB of Mendeleef s original periodic table. As we have seen in Chapter 13, zinc does not show very marked transition-metaf characteristics. The other two elements in this group, cadmium and mercury, lie at the ends of the second and third transition series (Y-Cd, La-Hg) and, although they resemble zinc in some respects in showing a predominantly - - 2 oxidation state, they also show rather more transition-metal characteristics. Additionally, mercury has characteristics, some of which relate it quite closely to its immediate predecessors in the third transition series, platinum and gold, and some of which are decidedly peculiar to mercury. [Pg.432]

Reference has been made already to the existence of a set of inner transition elements, following lanthanum, in which the quantum level being filled is neither the outer quantum level nor the penultimate level, but the next inner. These elements, together with yttrium (a transition metal), were called the rare earths , since they occurred in uncommon mixtures of what were believed to be earths or oxides. With the recognition of their special structure, the elements from lanthanum to lutetium were re-named the lanthanons or lanthanides. They resemble one another very closely, so much so that their separation presented a major problem, since all their compounds are very much alike. They exhibit oxidation state -i-3 and show in this state predominantly ionic characteristics—the ions. [Pg.441]

As with the other sem i-cm pineal methods. HyperGhem s im p le-meiitation of ZINDO/1 is restricted to spin multiplicities up to a quartet state. ZIXDO/1 lets you calculate the energy slates in molecules containing transition metals. [Pg.294]

H2 ean no longer be ignored in understanding the valenee states of the XY moleeules. This situation arises quite naturally in systems involving transition metals, where interaetions between empty metal or metal ion orbitals and 2-eleetron donor ligands are ubiquitous. [Pg.296]

Two elasses of systems illustrate eases for whieh heterolytie bond dissoeiation lies lower than the homolytie produets. The first involves transition metal dimer eations, M2. Espeeially for metals to the right side of the periodie table, sueh eations ean be eonsidered to have ground-state eleetron eonfigurations with a d d +i eharaeter, where the d eleetrons are not heavily involved in the bonding and the a bond is formed primarily from the metal atom s orbitals. If the a bond is homolytieally broken, one forms X + Y = M (s d +i)... [Pg.296]


See other pages where Transition metal state is mentioned: [Pg.166]    [Pg.289]    [Pg.292]    [Pg.101]    [Pg.90]    [Pg.168]    [Pg.166]    [Pg.289]    [Pg.292]    [Pg.101]    [Pg.90]    [Pg.168]    [Pg.204]    [Pg.257]    [Pg.407]    [Pg.956]    [Pg.1142]    [Pg.1547]    [Pg.2210]    [Pg.2222]    [Pg.2224]    [Pg.2391]    [Pg.2395]    [Pg.2395]    [Pg.2777]    [Pg.2785]    [Pg.205]    [Pg.259]    [Pg.367]    [Pg.385]    [Pg.389]    [Pg.393]    [Pg.417]    [Pg.207]   
See also in sourсe #XX -- [ Pg.213 ]

See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Metal states

Metallic state

© 2024 chempedia.info