Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals characteristics

These elements formed Group IIB of Mendeleef s original periodic table. As we have seen in Chapter 13, zinc does not show very marked transition-metaf characteristics. The other two elements in this group, cadmium and mercury, lie at the ends of the second and third transition series (Y-Cd, La-Hg) and, although they resemble zinc in some respects in showing a predominantly - - 2 oxidation state, they also show rather more transition-metal characteristics. Additionally, mercury has characteristics, some of which relate it quite closely to its immediate predecessors in the third transition series, platinum and gold, and some of which are decidedly peculiar to mercury. [Pg.432]

The "d" block elements "B" Croups (Columns 3-12). the transition metals Characteristically, atoms of these elements in their ground states have electron configurations that are filling d orbitals 17 For example, the first transition series proceeds from Sc(4i33d1) to Zn(4i,23d10). Each of these ten elements stands at the head of a family of congeners (e.g the chromium family, V1B, 6). [Pg.562]

Although new information has accumulated on this aspect of the chemistry of the earlier actinide elements, there still are many uncertainties that ought to be resolved. The area is intrinsically interesting because these elements have chemistries that combine lanthanide and ordinary transition metal characteristics, the latter being more marked in these low oxidation states. Work in the next few years will probably lead to a much clearer picture. [Pg.131]

Although formally part of the d block, the elements of group 12 do not show typical transition metal characteristics, as the d orbitals are too tightly bound to be involved in chemical bonding. These elements are better regarded as post-transition metals, and are dealt with in Section G (Topic G4). [Pg.261]

In this oxidation state the titanium atom has formally lost its 3d and 4s electrons as expected, therefore, it forms compounds which do not have the characteristics of transition metal compounds, and which indeed show strong resemblances to the corresponding compounds of the lower elements (Si, Ge, Sn, Pb) of Group IV—the group into which Mendeleef put titanium in his original form of the periodic table. [Pg.370]

Reference has been made already to the existence of a set of inner transition elements, following lanthanum, in which the quantum level being filled is neither the outer quantum level nor the penultimate level, but the next inner. These elements, together with yttrium (a transition metal), were called the rare earths , since they occurred in uncommon mixtures of what were believed to be earths or oxides. With the recognition of their special structure, the elements from lanthanum to lutetium were re-named the lanthanons or lanthanides. They resemble one another very closely, so much so that their separation presented a major problem, since all their compounds are very much alike. They exhibit oxidation state -i-3 and show in this state predominantly ionic characteristics—the ions. [Pg.441]

Pd-cataly2ed reactions of butadiene are different from those catalyzed by other transition metal complexes. Unlike Ni(0) catalysts, neither the well known cyclodimerization nor cyclotrimerization to form COD or CDT[1,2] takes place with Pd(0) catalysts. Pd(0) complexes catalyze two important reactions of conjugated dienes[3,4]. The first type is linear dimerization. The most characteristic and useful reaction of butadiene catalyzed by Pd(0) is dimerization with incorporation of nucleophiles. The bis-rr-allylpalladium complex 3 is believed to be an intermediate of 1,3,7-octatriene (7j and telomers 5 and 6[5,6]. The complex 3 is the resonance form of 2,5-divinylpalladacyclopentane (1) and pallada-3,7-cyclononadiene (2) formed by the oxidative cyclization of butadiene. The second reaction characteristic of Pd is the co-cyclization of butadiene with C = 0 bonds of aldehydes[7-9] and CO jlO] and C = N bonds of Schiff bases[ll] and isocyanate[12] to form the six-membered heterocyclic compounds 9 with two vinyl groups. The cyclization is explained by the insertion of these unsaturated bonds into the complex 1 to generate 8 and its reductive elimination to give 9. [Pg.423]

Flowever, transition metal complexes do absorb in the visible region, giving them a characteristic colour. Flow can this happen if the transitions are forbidden The answer is that interaction may occur between the motion of the electrons and vibrational motions so that some vibronic transitions are allowed (see Section 7.3.4.2b). [Pg.275]

Alkali or alkaline-earth salts of both complexes are soluble in water (except for Ba2[Fe(CN)g]) but are insoluble in alcohol. The salts of hexakiscyanoferrate(4—) are yellow and those of hexakiscyanoferrate(3—) are mby red. A large variety of complexes arise when one or more cations of the alkah or alkaline-earth salts is replaced by a complex cation, a representative metal, or a transition metal. Many salts have commercial appHcations, although the majority of industrial production of iron cyanide complexes is of iron blues such as Pmssian Blue, used as pigments (see Pigments, inorganic). Many transition-metal salts of [Fe(CN)g] have characteristic colors. Addition of [Fe(CN)g] to an unknown metal salt solution has been used as a quaUtative test for those transition metals. [Pg.434]

Transition metals can be divided into two groups according to the characteristics of their peroxides. The first group comprises those metals that, in their highest oxidation states, have no d electrons, eg, TP" and These metals form peroxides from hydrogen peroxide, the colors of which result from... [Pg.96]

The next major commodity plastic worth discussing is polypropylene. Polypropylene is a thermoplastic, crystalline resin. Its production technology is based on Ziegler s discovery in 1953 of metal alkyl-transition metal halide olefin polymerization catalysts. These are heterogeneous coordination systems that produce resin by stereo specific polymerization of propylene. Stereoregular polymers characteristically have monomeric units arranged in orderly periodic steric configuration. [Pg.237]

Transition-metal complexes of the thionylimide anion exhibit characteristic vibrations in the regions 1260-1120, 1090-1010 and 630-515 cm , which are assigned to Oas(NSO), Os(NSO) and <5(NSO), respectively. X-ray structural data for several M-NSO complexes reveal N-S and S-O bond lengths of ca. 1.46 0.04 A indicative of double bond character in both of these bonds. [Pg.135]

A limited number of non-transition-metal derivatives of thiophene will be considered in this subsection. There are no short-range contacts between the lithium atoms originating from the (LiO)6 cores and the sulfur atoms in [Li—O—EMc2 (2-C4H3S)]6 (E = C, Si) (97OM5032), and evidence for Tr-interactions can be found in the X-ray crystal structures of these compounds. Theoretical computations show that a- (S ) Li" " interactions are weak, whereas Tr-Li" contributions are considerable, in accord with the general reasoning on the electronic characteristics of uncomplexed thiophene. [Pg.8]

Summary of kinetic characteristics for decompositions of some transition metal sulphides... [Pg.157]

Relative differences between S 2p3/2 and O 1 s ionization potentials show a characteristic separation for oxygen-bound and sulphur-bound sulphoxides. It is clearly shown in Table 20 that sulphur-bound complexes have (O 1 s-S 2p3/2) relative shifts of 365.0 eV, while oxygen-bound complexes have relative shifts of 365.8 eV. Infrared and X-ray crystallographic results also show that most neutral platinum and palladium dialkyl sulphoxide complexes contain metal-sulphur rather than metal-oxygen bonds, while first-row transition metals favour oxygen-bonded sulphoxide. [Pg.571]

Most studies of the effect of alkalis on the adsorption of gases on catalyst surfaces refer to CO, NO, C02, 02, H2 and N2, due to the importance of these adsorbates for numerous industrial catalytic processes (e.g. N2 adsorption in NH3 synthesis, NO reduction by CO). Thus emphasis will be given on the interaction of these molecules with alkali-modified surfaces, especially transition metal surfaces, aiming to the identification of common characteristics and general trends. [Pg.35]

Equation (6.20) and the semiquantitative trends it conveys, can be rationalized not only on the basis of lateral coadsorbate interactions (section 4.5.9.2) and rigorous quantum mechanical calculations on clusters89 (which have shown that 80% of the repulsive O2 - O interaction is indeed an electrostatic (Stark) through-the-vacuum interaction) but also by considering the band structure of a transition metal (Fig. 6.14) and the changes induced by varying O (or EF) on the chemisorption of a molecule such as CO which exhibits both electron acceptor and electron donor characteristics. This example has been adapted from some rigorous recent quantum mechanical calculations of Koper and van Santen.98... [Pg.301]


See other pages where Transition metals characteristics is mentioned: [Pg.184]    [Pg.78]    [Pg.261]    [Pg.33]    [Pg.27]    [Pg.105]    [Pg.106]    [Pg.222]    [Pg.184]    [Pg.78]    [Pg.261]    [Pg.33]    [Pg.27]    [Pg.105]    [Pg.106]    [Pg.222]    [Pg.2395]    [Pg.2398]    [Pg.2422]    [Pg.13]    [Pg.389]    [Pg.417]    [Pg.438]    [Pg.127]    [Pg.235]    [Pg.378]    [Pg.238]    [Pg.124]    [Pg.299]    [Pg.987]    [Pg.1206]    [Pg.1236]    [Pg.244]    [Pg.327]    [Pg.54]    [Pg.323]    [Pg.321]    [Pg.100]    [Pg.227]    [Pg.26]   
See also in sourсe #XX -- [ Pg.6 , Pg.9 , Pg.30 , Pg.48 ]




SEARCH



Metal characteristics

Structure and characteristics of key transition metals

Transition metal-Group 13 element complexes characteristics

Transition-metal compounds bonding characteristics

© 2024 chempedia.info