Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal complexes examples

A great variety of suitable polymers is accessible by polymerization of vinylic monomers, or by reaction of alcohols or amines with functionalized polymers such as chloromethylat polystyrene or methacryloylchloride. The functionality in the polymer may also a ligand which can bind transition metal complexes. Examples are poly-4-vinylpyridine and triphenylphosphine modified polymers. In all cases of reactively functionalized polymers, the loading with redox active species may also occur after film formation on the electrode surface but it was recognized that such a procedure may lead to inhomogeneous distribution of redox centers in the film... [Pg.53]

Room temperature emission has been observed for a number of transition metal complexes. Examples include Rh111 ammines,53 [Pt(CN)4]2-,54 and some Cu1 phosphine complexes.55 An important class is that of the polypyridine complexes of Ru11 and related species.56 This last emission, probably from a 3CT state, is quite strong and its occurrence has made possible a number of detailed studies of electron transfer quenching reactions. [Pg.396]

Superoxide ion is an effective reducing agent of transition-metal complexes examples include copper(II),4 50 manganese(in),5I,52 iron(III).53,54 It also reduces ferricenium ion, MnIV202(o-phen)44- -, CoPI(o-phen)33+, and IrIVci62- by one-electron processes.55... [Pg.175]

Anion exchangers such as lonPac ASS are also suited for the analysis of precious and transition metal complexes. Examples of chromatograms for the separation of metal-EDTA and metal-chloro complexes are displayed in Figures 3.154 and 3.155, respectively. [Pg.221]

Oxidative addition offers a direct method to cleave a covalent bond. Although a wide variety of bonds, such as C-1 and C-Br, are known to facilely undergo oxidative addition reactions to low-valent transition metal complexes, examples of oxidative addition of C—C single bonds are far more rare. The scarcity is in part associated with the thermodynamic stability of C—C bonds. Whereas oxidative addition of C-Br and C-I bonds to low-valent metals is thermodynamically favored in general, that of a C—C single bond is often thermodynamically disfavored. [Pg.2]

Water s Lewis base character makes it a common ligand in transition metal complexes, examples of which range from solvated ions, such as Fe(H20)3+... [Pg.100]

A large number of organometallic compounds are based on transition metals Examples include organic derivatives of iron nickel chromium platinum and rhodium Many important industrial processes are catalyzed by transition metals or their complexes Before we look at these processes a few words about the structures of transition metal complexes are m order... [Pg.608]

Aminoboranes have been used as ligands in complexes with transition metals (66) in one instance giving a rare example of two-coordinate, non-t/ transition-metal complexes. The molecular stmcture of the iron complex Fe[N(Mes)B(Mes)2]2 where Mes = is shown in Figure 1. The... [Pg.263]

There are only a few weU-documented examples of catalysis by metal clusters, and not many are to be expected as most metal clusters are fragile and fragment to give metal complexes or aggregate to give metal under reaction conditions (39). However, the metal carbonyl clusters are conceptually important because they form a bridge between catalysts commonly used in solution, ie, transition-metal complexes with single metal atoms, and catalysts commonly used on surfaces, ie, small metal particles or clusters. [Pg.169]

Technetium-99m coordination compounds are used very widely as noniavasive imaging tools (35) (see Imaging technology Radioactive tracers). Different coordination species concentrate ia different organs. Several of the [Tc O(chelate)2] types have been used. In fact, the large majority of nuclear medicine scans ia the United States are of technetium-99m complexes. Moreover, chiral transition-metal complexes have been used to probe nucleic acid stmcture (see Nucleic acids). For example, the two chiral isomers of tris(1,10-phenanthroline)mthenium (IT) [24162-09-2] (14) iateract differentiy with DNA. These compounds are enantioselective and provide an addition tool for DNA stmctural iaterpretation (36). [Pg.173]

A variety of routes is available for the preparation of metal-thionitrosyl complexes. The most common of these are (a) reaction of nitride complexes with a sulfur source, e.g., elemental sulfur, propylene sulfide or sulfur halides, (b) reaction of (NSC1)3 with transition-metal complexes, and (c) reaction of [SN]" salts with transition-metal complexes. An example of each of these approaches is given in Eq. 7.1,... [Pg.123]

The coordination chemistry of SO2 has been extensively studied during the past two decades and at least 9 different bonding modes have been established.These are illustrated schematically in Fig. 15.26 and typical examples are given in Table 15.17.1 It is clear that nearly all the transition-metal complexes involve the metals in oxidation state zero or -bl. Moreover, SO2 in the pyramidal >7 -dusters tends to be reversibly bound (being eliminated when... [Pg.701]

Catalytic, enantioselective cyclopropanation enjoys the unique distinction of being the first example of asymmetric catalysis with a transition metal complex. The landmark 1966 report by Nozaki et al. [1] of decomposition of ethyl diazoacetate 3 with a chiral copper (II) salicylamine complex 1 (Scheme 3.1) in the presence of styrene gave birth to a field of endeavor which still today represents one of the major enterprises in chemistry. In view of the enormous growth in the field of asymmetric catalysis over the past four decades, it is somewhat ironic that significant advances in cyclopropanation have only emerged in the past ten years. [Pg.85]

In cases in which the ionic liquid is not directly involved in creating the active catalytic species, a co-catalytic interaction between the ionic liquid solvent and the dissolved transition metal complex still often takes place and can result in significant catalyst activation. When a catalyst complex is, for example, dissolved in a slightly acidic ionic liquid, some electron-rich parts of the complex (e.g., lone pairs of electrons in the ligand) will interact with the solvent in a way that will usually result in a lower electron density at the catalytic center (for more details see Section 5.2.3). [Pg.222]

As one would expect, in those cases in which the ionic liquid acts as a co-catalyst, the nature of the ionic liquid becomes very important for the reactivity of the transition metal complex. The opportunity to optimize the ionic medium used, by variation of the halide salt, the Lewis acid, and the ratio of the two components forming the ionic liquid, opens up enormous potential for optimization. However, the choice of these parameters may be restricted by some possible incompatibilities with the feedstock used. Undesired side reactions caused by the Lewis acidity of the ionic liquid or by strong interaction between the Lewis acidic ionic liquid and, for example, some oxygen functionalities in the substrate have to be considered. [Pg.222]

Acidic chloroaluminate ionic liquids have already been described as both solvents and catalysts for reactions conventionally catalyzed by AICI3, such as catalytic Friedel-Crafts alkylation [35] or stoichiometric Friedel-Crafts acylation [36], in Section 5.1. In a very similar manner, Lewis-acidic transition metal complexes can form complex anions by reaction with organic halide salts. Seddon and co-workers, for example, patented a Friedel-Crafts acylation process based on an acidic chloro-ferrate ionic liquid catalyst [37]. [Pg.225]

This is surprising in view of the fact that a great deal of effort was made to study transition metal complexes in chloroaluminate ionic liquids in the 1980s and early 1990s (see Section 6.1 for some examples). The investigations at this time generally started with electrochemical studies [41], but also included spectroscopic and complex chemistry experiments [42]. [Pg.228]

In comparison with traditional biphasic catalysis using water, fluorous phases, or polar organic solvents, transition metal catalysis in ionic liquids represents a new and advanced way to combine the specific advantages of homogeneous and heterogeneous catalysis. In many applications, the use of a defined transition metal complex immobilized on a ionic liquid support has already shown its unique potential. Many more successful examples - mainly in fine chemical synthesis - can be expected in the future as our loiowledge of ionic liquids and their interactions with transition metal complexes increases. [Pg.253]

As well as phosphorus ligands, heterocyclic carbenes ligands 10 have proven to be interesting donor ligands for stabilization of transition metal complexes (especially palladium) in ionic liquids. The imidazolium cation is usually presumed to be a simple inert component of the solvent system. However, the proton on the carbon atom at position 2 in the imidazolium is acidic and this carbon atom can be depro-tonated by, for example, basic ligands of the metal complex, to form carbenes (Scheme 5.3-2). [Pg.269]


See other pages where Transition metal complexes examples is mentioned: [Pg.910]    [Pg.49]    [Pg.366]    [Pg.1802]    [Pg.160]    [Pg.119]    [Pg.475]    [Pg.218]    [Pg.910]    [Pg.49]    [Pg.366]    [Pg.1802]    [Pg.160]    [Pg.119]    [Pg.475]    [Pg.218]    [Pg.60]    [Pg.210]    [Pg.259]    [Pg.608]    [Pg.271]    [Pg.134]    [Pg.248]    [Pg.168]    [Pg.170]    [Pg.451]    [Pg.608]    [Pg.181]    [Pg.469]    [Pg.670]    [Pg.673]    [Pg.997]    [Pg.221]    [Pg.222]    [Pg.253]    [Pg.154]    [Pg.357]    [Pg.456]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



© 2024 chempedia.info