Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal catalysts formation

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

It has been postulated that the syn TT-ahyl stmcture yields the trans-1 4 polymer, and the anti TT-ahyl stmcture yields the cis-1 4 polymer. Both the syn and anti TT-ahyl stmctures yield 1,2 units. In the formation of 1,2-polybutadiene, it is beheved that the syn TT-ahyl form yields the syndiotactic stmcture, while the anti TT-ahyl form yields the isotactic stmcture. The equihbtium mixture of syn and anti TT-ahyl stmctures yields heterotactic polybutadiene. It has been shown (20—26) that the syndiotactic stereoisomers of 1,2-polybutadiene units can be made with transition-metal catalysts, and the pure 99.99% 1,2-polybutadiene (heterotactic polybutadiene) [26160-98-5] can be made by using organolithium compounds modified with bis-pipetidinoethane (27). At present, the two stereoisomers of 1,2-polybutadiene that are most used commercially are the syndiotactic and the heterotactic stmctures. [Pg.530]

Abstract—Carbon nanotubules were produced in a large amount by catalytic decomposition of acetylene in the presence of various supported transition metal catalysts. The influence of different parameters such as the nature of the support, the size of active metal particles and the reaction conditions on the formation of nanotubules was studied. The process was optimized towards the production of nanotubules having the same diameters as the fullerene tubules obtained from the arc-discharge method. The separation of tubules from the substrate, their purification and opening were also investigated. [Pg.15]

Synthesis of N-heterocycles with C—N bond formation catalyzed by transition metal catalysts 97SL749. [Pg.222]

Studies on the dimerization and hydrogenation of olefins with transition metal catalysts in acidic chloroaluminate(III) ionic liquids report the formation of higher molecular weight fractions consistent with cationic initiation [L7, 20, 27, 28]. These... [Pg.320]

C-C and C-E (E = heteroatom) bond formations are valuable reactions in organic synthesis, thus these reactions have been achieved to date by considerable efforts of a large number of chemists using a precious-metal catalysts (e.g., Ru, Rh, and Pd). Recently, the apphcation range of iron catalysts as an alternative for rare and expensive transition-metal catalysts has been rapidly expanded (for recent selected examples, see [12-20, 90-103]). In these reactions, a Fe-H species might act as a reactive key intermediate but also represent a deactivated species, which is prepared by p-H elimination. [Pg.52]

Immunohistochemical studies carried out in our laboratories have demonstrated the presence of xanthine oxidase in synovial endothelial cells (Stevens etal., 1991). As expected, the activity of this enzyme per unit weight of tissue is generally higher in synovia taken from RA patients due to their increased vascularity (Allen et al., 1987). In addition, it has also been shown that rheumatoid synoviocytes contain increased levels of iron-saturated ferritin (Morris et d., 1986). Xanthine oxidase (but not dehydrogenase) is able to mobilize iron from ferritin, supplying the necessary transition metal catalyst for the Haber-Weiss reaction and promoting OH formation (Biemond eta/., 1986). [Pg.100]

The efficient removal of O2 and H2O2 vvill diminish OH formation and therefore antioxidant defence systems have evolved to limit their accumulation. Enzymic and low molecular weight antioxidants exist to scavenge free radicals as self-protection mechanisms. Some proteins exhibit antioxidant properties because they chelate transition-metal catalysts. The significance of antioxidants in relation to inflammatory joint disease is discussed below. [Pg.100]

As for cyclopropanation of alkenes with aryldiazomethanes, there seems to be only one report of a successful reaction with a group 9 transition metal catalyst Rh2(OAc)4 promotes phenylcyclopropane formation with phenyldiazomethane, but satisfactory yields are obtained only with vinyl ethers 4S) (Scheme 2). Cis- and trans-stilbene as well as benzalazine represent by-products of these reactions, and Rh2(OAc)4 has to be used in an unusually high concentration because the azine inhibits its catalytic activity. With most monosubstituted alkenes of Scheme 2, a preference for the Z-cyclopropane is observed similarly, -selectivity in cyclopropanation of cyclopentene is found. These selectivities are the exact opposite to those obtained in reactions of ethyl diazoacetate with the same olefins 45). Furthermore, they are temperature-dependent for example, the cisjtrcms ratio for l-ethoxy-2-phenylcyclopropane increases with decreasing temperature. [Pg.85]

Direct aromatic substitution of unactivated aryl halides is slow and generally requires a catalyst to become a useful synthetic method. Copper reagents have been used in some cases in classical procedures for the formation of products from aromatic substitution. In many cases these copper-mediated reactions occur at high temperatures and are substrate dependent. Since the 1970s, transition metal catalysts have been developed for aromatic substitution. Most of the early effort toward developing metal-catalyzed aromatic substitution focused on the formation of... [Pg.369]

Bolt, H. 1994. Transition metal-aluminate formation in alumina-supported model catalysts. PhD thesis, University of Utrecht. [Pg.266]

The ruthenium-, rhodium-, and palladium-catalyzed C-C bond formations involving C-H activation have been reviewed from the reaction types and mechanistic point of view.135-138 The activation of aromatic carbonyl compounds by transition metal catalyst undergoes ortho-alkylation through the carbometallation of unsaturated partner. This method offers an elegant way to activate C-H bond as a nucleophilic partner. The rhodium catalyst 112 has been used for the alkylation of benzophenone by vinyltrimethylsilane, affording the monoalkylated product 110 in 88% yield (Scheme 34). The formation of the dialkylated product is also observed in some cases. The ruthenium catalyst 113 has shown efficiency for such alkylation reactions, and n-methylacetophenone is transformed to the ortho-disubstituted acetophenone 111 in 97% yield without over-alkylation at the methyl substituent. [Pg.315]

Olefin metathesis (olefin disproportionation) is the reaction of two alkenes in which the redistribution of the olelinic bonds takes place with the aid of transition metal catalysts (Scheme 7.7). The reaction proceeds with an intermediate formation of a metallacyclobutene. This may either break down to provide two new olefins, or open up to generate a metal alkylidene species which -by multiple alkene insertion- may lead to formation of alkylidenes with a polymeric moiety [21]. Ring-opening metathesis polymerization (ROMP) is the reaction of cyclic olefins in which backbone-unsaturated polymers are obtained. The driving force of this process is obviously in the relief of the ring strain of the monomers. [Pg.198]


See other pages where Transition metal catalysts formation is mentioned: [Pg.67]    [Pg.57]    [Pg.186]    [Pg.187]    [Pg.431]    [Pg.232]    [Pg.613]    [Pg.267]    [Pg.77]    [Pg.102]    [Pg.3]    [Pg.97]    [Pg.172]    [Pg.242]    [Pg.37]    [Pg.389]    [Pg.141]    [Pg.370]    [Pg.514]    [Pg.153]    [Pg.182]    [Pg.55]    [Pg.238]    [Pg.684]    [Pg.76]    [Pg.452]    [Pg.784]    [Pg.94]    [Pg.94]    [Pg.272]    [Pg.143]    [Pg.226]    [Pg.87]    [Pg.108]    [Pg.129]    [Pg.379]   
See also in sourсe #XX -- [ Pg.1400 , Pg.1401 ]




SEARCH



Formates, metalated

Metal formate

Metals, formation

Transition catalyst

Transition formation

© 2024 chempedia.info