Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal catalysts description

With the introduction of a variety of surface-sensitive instrumental techniques and the use of transient techniques utilizing isotopic tracers, the carbide theory of chain growth was revived to represent a dominant viewpoint since 1980. Brady and Pettit showed that the decomposition of diazomethane on various transition metal catalysts and in the absence of CO and H2 primarily led to ethylene. In the presence of H2, hydrocarbons up to Cjg were formed and conformed to the Schulz-Flory distribution expected for FTS (for an example of a description of Schulz-Flory distribution, see Reference 23). It was... [Pg.52]

The formation of high polymers of olefins in the presence of titanium halogenides with no specially added organometallic co-catalysts was discovered long ago [see (147), and the references therein], A complete description of various alkyl-free polymerization catalysts based on the use of transition metal chlorides may be found in the review by Boor (17), where a comparison of these catalysts with traditional two-component systems is given. [Pg.192]

Bohm, L. L, Franke, R., Thum, G., The microreactors as a model for the description of the ethylene polymerization with heterogeneous catalysts, in Kaminsky, W., Sinn, H. (Eds.), Transition metals and organometallics as catalysts for olefln polymerization, pp. 391-403, Springer-Verlag, Berlin (1988). [Pg.108]

Chiral phosphine based transition metal complexes are nsed as a powerful tool for asymmetric synthesis (3). A fundamental mechanistic nnderstanding is required for rhodium and mthenium catalyzed reactions. The starting point of those investigations was the clear and detailed stractnral description of the isolated pre catalyst system. [Pg.204]

The polymerization of olefins and di-olefins is one of the most important targets in polymer science. This review article describes recent progress in this field and deals with organo-transition metal complexes as polymerization catalysts. Recent developments in organometallic chemistry have prompted us to find a precise description of the mechanism of propagation, chain transfer, and termination steps in the homogeneously metal-assisted polymerization of olefins and diolefins. Thus, this development provides an idea for designing any catalyst systems that are of interest in industry. [Pg.3]

The description of pure quantum mechanics (QM) methods presented in Section 3 has shown how in most cases they provide an accurate description of the electronic subtleties involved at the transition metal center of a catalytic process, but that they are unable to introduce the whole bulk of the catalyst substituents, which can be critical for selectivity issues. The description of pure molecular mechanics (MM) methods presented in subsection 4.1 has shown how these methods can easily introduce the steric bulk of the substituents, and accurately describe their steric interactions, but that they struggle badly when trying to describe properly the transition metal center and its immediate environment. The logical solution to this complementary limitations is to divide the chemical system in two regions, and to use a different description for each of them, QM for the metal and its environment, MM for the rest of the system. This is precisely the basic idea of hybrid quantum mechanics / molecular mechanics (QM/MM) methods. [Pg.14]

In the earlier volume of this book, the chapter dedicated to transition metal peroxides, written by Mimoun , gave a detailed description of the features of the identified peroxo species and a survey of their reactivity toward hydrocarbons. Here we begin from the point where Mimoun ended, thus we shall analyze the achievements made in the field in the last 20 years. In the first part of our chapter we shall review the newest species identified and characterized as an example we shall discuss in detail an important breakthrough, made more than ten years ago by Herrmann and coworkers who identified mono- and di-peroxo derivatives of methyl-trioxorhenium. With this catalyst, as we shall see in detail later on in the chapter, several remarkable oxidative processes have been developed. Attention will be paid to peroxy and hydroperoxide derivatives, very nnconunon species in 1982. Interesting aspects of the speciation of peroxo and peroxy complexes in solntion, made with the aid of spectroscopic and spectrometric techniqnes, will be also considered. The mechanistic aspects of the metal catalyzed oxidations with peroxides will be only shortly reviewed, with particular attention to some achievements obtained mainly with theoretical calculations. Indeed, for quite a long time there was an active debate in the literature regarding the possible mechanisms operating in particular with nucleophilic substrates. This central theme has been already very well described and discussed, so interested readers are referred to published reviews and book chapters . [Pg.1057]

The discussion of Mnetic work will be here preceded by a summarized description of the chemical nature of the polymerization, to which we have attributed a mechanism of anionic coordinated type. Such a definition of the reaction mechanism depends upon the fact that the catalyst is a complex in which, generally, a transition metal acts as a coordinating agent and that a carbon atom, which belongs to the extremity of a growing polymeric chain, is coordinated to such a complex and, in the activated state, it possesses a negative charge. [Pg.2]

We need to develop methods to understand trends for complex reactions with many reaction steps. This should preferentially be done by developing models to understand trends, since it will be extremely difficult to perform experiments or DFT calculations for all systems of interest. Many catalysts are not metallic, and we need to develop the concepts that have allowed us to understand and develop models for trends in reactions on transition metal surfaces to other classes of surfaces oxides, carbides, nitrides, and sulfides. It would also be extremely interesting to develop the concepts that would allow us to understand the relationships between heterogeneous catalysis and homogeneous catalysis or enzyme catalysis. Finally, the theoretical methods need further development. The level of accuracy is now so that we can describe some trends in reactivity for transition metals, but a higher accuracy is needed to describe the finer details including possibly catalyst selectivity. The reliable description of some oxides and other insulators may also not be possible unless the theoretical methods to treat exchange and correlation effects are further improved. [Pg.317]

This article is focused on HDN, the removal of nitrogen from compounds in oil fractions. Hydrodemetallization, the removal of nickel and vanadium, is not discussed, and HDS is discussed only as it is relevant to HDN. Section II is a discussion of HDN on sulfidic catalysts the emphasis is on the mechanisms of HDN and how nitrogen can be removed from specific molecules with the aid of sulfidic catalysts. Before the discussion of these mechanisms, Section II.A provides a brief description of the synthesis of the catalyst from the oxidic to the sulfidic form, followed by current ideas about the structure of the final, sulfidic catalyst and the catalytic sites. All this information is presented with the aim of improving our understanding of the catalytic mechanisms. Section II.B includes a discussion of HDN mechanisms on sulfidic catalysts to explain the reactions that take place in today s industrial HDN processes. Section II.C is a review of the role of phosphate and fluorine additives and current thinking about how they improve catalytic activity. Section II.D presents other possibilities for increasing the activity of the catalyst, such as by means of other transition-metal sulfides and the use of supports other than alumina. [Pg.401]

Alkenes can be hydroformylated " by treatment with carbon monoxide and hydrogen over a catalyst. The most common catalysts are cobalt carbonyls (see below for a description of the mechanism) and rhodium complexes, " but other transition metal compounds have also been used. Cobalt catalysts are less active than the rhodium type, and catalysts of other metals are generally less active. " Commercially, this is called the 0x0 process, but it can be carried out in the laboratory in an ordinary hydrogenation apparatus. The order of reactivity is straight-chain terminal alkenes > straight-chain internal alkenes > branched-chain alkenes. With terminal alkenes, for example, the aldehyde unit is formed on both the primary and secondary carbon, but proper choice of catalyst and additive leads to selectivity for the secondary product " or primary... [Pg.1145]

The catalysts are usually prepared in hydrocarbon solvents, essentially in the absence of air or moisture and are mixtures of ill-defined composition. In many instances dark-coloured precipitates are formed of variable stoichiometry containing complexes of the organo-metal compound with the transition metal in a lower valence state. Natta [5] showed that pure lower valence transition metal compounds, such as titanium or vanadium trichloride, when treated with organo-metal compounds were effective catalysts, and were particularly suitable for the preparation of crystalline high melting point polyolefins. The close identity of these two classes of catalyst has led to their description as... [Pg.133]


See other pages where Transition metal catalysts description is mentioned: [Pg.67]    [Pg.727]    [Pg.213]    [Pg.248]    [Pg.46]    [Pg.947]    [Pg.86]    [Pg.67]    [Pg.7664]    [Pg.397]    [Pg.211]    [Pg.95]    [Pg.491]    [Pg.98]    [Pg.244]    [Pg.178]    [Pg.130]    [Pg.3]    [Pg.162]    [Pg.94]    [Pg.112]    [Pg.250]    [Pg.1057]    [Pg.470]    [Pg.240]    [Pg.155]    [Pg.326]    [Pg.118]    [Pg.353]    [Pg.86]    [Pg.133]    [Pg.219]    [Pg.89]    [Pg.3]    [Pg.140]    [Pg.393]    [Pg.131]    [Pg.189]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Catalysts description

Metal description

Transition catalyst

© 2024 chempedia.info